delete scripts
Browse files- configuration_stepaudio.py +0 -41
- modeling_stepaudio.py +0 -392
configuration_stepaudio.py
DELETED
@@ -1,41 +0,0 @@
|
|
1 |
-
from typing import Optional, List, Any, Dict
|
2 |
-
from transformers.configuration_utils import PretrainedConfig
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
class StepAudioConfig(PretrainedConfig):
|
7 |
-
model_type = "step_audio"
|
8 |
-
keys_to_ignore_at_inference = ["past_key_values"]
|
9 |
-
|
10 |
-
def __init__(
|
11 |
-
self,
|
12 |
-
hidden_size: int = 5120,
|
13 |
-
intermediate_size: int = 13312,
|
14 |
-
num_attention_heads: int = 40,
|
15 |
-
num_attention_groups: int = 8,
|
16 |
-
num_hidden_layers: int = 48,
|
17 |
-
max_seq_len: int = 4096,
|
18 |
-
vocab_size: int = 65536,
|
19 |
-
rms_norm_eps: float = 1e-5,
|
20 |
-
bos_token_id: int = 1,
|
21 |
-
eos_token_id: int = 3,
|
22 |
-
pad_token_id: int = 0,
|
23 |
-
**kwargs,
|
24 |
-
) -> None:
|
25 |
-
self.hidden_size = hidden_size
|
26 |
-
self.intermediate_size = intermediate_size
|
27 |
-
self.num_attention_heads = num_attention_heads
|
28 |
-
self.num_attention_groups = num_attention_groups
|
29 |
-
self.num_hidden_layers = num_hidden_layers
|
30 |
-
self.max_seq_len = max_seq_len
|
31 |
-
self.vocab_size = vocab_size
|
32 |
-
self.rms_norm_eps = rms_norm_eps
|
33 |
-
super().__init__(
|
34 |
-
bos_token_id=bos_token_id,
|
35 |
-
pad_token_id=pad_token_id,
|
36 |
-
eos_token_id=eos_token_id,
|
37 |
-
**kwargs
|
38 |
-
)
|
39 |
-
|
40 |
-
|
41 |
-
__all__ = ["StepAudioConfig"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modeling_stepaudio.py
DELETED
@@ -1,392 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
from typing import Optional, Tuple, Union, List
|
3 |
-
|
4 |
-
import torch
|
5 |
-
import torch.utils.checkpoint
|
6 |
-
from torch import nn
|
7 |
-
from transformers.generation import GenerationMixin
|
8 |
-
|
9 |
-
from transformers.modeling_utils import PreTrainedModel
|
10 |
-
from transformers.utils import logging
|
11 |
-
from .configuration_stepaudio import StepAudioConfig
|
12 |
-
from transformers.cache_utils import Cache, DynamicCache
|
13 |
-
from einops import rearrange
|
14 |
-
from transformers.modeling_outputs import (
|
15 |
-
BaseModelOutputWithPast,
|
16 |
-
CausalLMOutputWithPast,
|
17 |
-
)
|
18 |
-
|
19 |
-
logger = logging.get_logger(__name__)
|
20 |
-
|
21 |
-
|
22 |
-
def build_alibi_cache(block_size, n_heads, dtype, device):
|
23 |
-
# get slopes
|
24 |
-
n = 2 ** math.floor(math.log2(n_heads)) # nearest 2**n to n_heads
|
25 |
-
m0 = 2.0 ** (-8.0 / n)
|
26 |
-
# 2^(-8/n), 2^(-8*2/n), 2^(-8*3/n), ...
|
27 |
-
slopes = torch.pow(m0, torch.arange(1, n + 1))
|
28 |
-
if n < n_heads:
|
29 |
-
m1 = 2.0 ** (-4.0 / n)
|
30 |
-
# 2^(-8/(2n)), 2^(-8*3/(2n)), 2^(-8*5/(2n)), ...
|
31 |
-
mm = torch.pow(m1, torch.arange(1, 1 + 2 * (n_heads - n), 2))
|
32 |
-
slopes = torch.cat([slopes, mm])
|
33 |
-
slopes = slopes.to(device)
|
34 |
-
|
35 |
-
tril = torch.tril(torch.ones(1, 1, block_size, block_size, device=device))
|
36 |
-
|
37 |
-
bias_rows = torch.arange(block_size, device=device).view(1, -1)
|
38 |
-
bias_cols = torch.arange(block_size, device=device).view(-1, 1)
|
39 |
-
bias = -torch.sqrt(bias_cols - bias_rows)
|
40 |
-
bias = bias.view(1, block_size, block_size) * slopes.view(-1, 1, 1)
|
41 |
-
bias = bias.masked_fill(tril == 0, float("-inf"))
|
42 |
-
|
43 |
-
return bias.type(dtype)
|
44 |
-
|
45 |
-
|
46 |
-
class StepAudioRMSNorm(torch.nn.Module):
|
47 |
-
def __init__(self, hidden_size, eps=1e-5):
|
48 |
-
super().__init__()
|
49 |
-
self.weight = torch.nn.Parameter(torch.ones(hidden_size))
|
50 |
-
self.eps = eps
|
51 |
-
|
52 |
-
def forward(self, x: torch.Tensor):
|
53 |
-
var = x.float().pow(2).mean(-1, keepdim=True)
|
54 |
-
x = x * torch.rsqrt(var + self.eps).to(x.dtype)
|
55 |
-
x = x * self.weight
|
56 |
-
return x
|
57 |
-
|
58 |
-
|
59 |
-
class StepAudioAttention(torch.nn.Module):
|
60 |
-
def __init__(self, hidden_size, num_heads, num_groups, layer_idx: int):
|
61 |
-
super().__init__()
|
62 |
-
|
63 |
-
self.num_heads = num_heads
|
64 |
-
self.num_groups = num_groups
|
65 |
-
self.hidden_size = hidden_size
|
66 |
-
self.head_dim = hidden_size // num_heads
|
67 |
-
|
68 |
-
self.q_proj = torch.nn.Linear(hidden_size, hidden_size, bias=False)
|
69 |
-
self.k_proj = torch.nn.Linear(
|
70 |
-
hidden_size, num_groups * self.head_dim, bias=False
|
71 |
-
)
|
72 |
-
self.v_proj = torch.nn.Linear(
|
73 |
-
hidden_size, num_groups * self.head_dim, bias=False
|
74 |
-
)
|
75 |
-
self.o_proj = torch.nn.Linear(hidden_size, hidden_size, bias=False)
|
76 |
-
|
77 |
-
self.layer_idx = layer_idx
|
78 |
-
|
79 |
-
def forward(
|
80 |
-
self,
|
81 |
-
x: torch.Tensor,
|
82 |
-
past_key_value: Optional[Cache] = None,
|
83 |
-
attention_mask: Optional[torch.Tensor] = None,
|
84 |
-
cache_position: Optional[torch.LongTensor] = None,
|
85 |
-
):
|
86 |
-
|
87 |
-
q: torch.Tensor = self.q_proj(x)
|
88 |
-
k: torch.Tensor = self.k_proj(x)
|
89 |
-
v: torch.Tensor = self.v_proj(x)
|
90 |
-
if past_key_value is not None:
|
91 |
-
cache_kwargs = {"cache_position": cache_position}
|
92 |
-
k, v = past_key_value.update(k, v, self.layer_idx, cache_kwargs)
|
93 |
-
|
94 |
-
q = rearrange(q, "b s (h d) -> b s h d", h=self.num_heads)
|
95 |
-
k = rearrange(k, "b s (g d) -> b s g d", g=self.num_groups)
|
96 |
-
v = rearrange(v, "b s (g d) -> b s g d", g=self.num_groups)
|
97 |
-
|
98 |
-
k = k.repeat_interleave(self.num_heads // self.num_groups, dim=-2)
|
99 |
-
v = v.repeat_interleave(self.num_heads // self.num_groups, dim=-2)
|
100 |
-
|
101 |
-
attention_mask = build_alibi_cache(
|
102 |
-
k.size(1), self.num_heads, dtype=q.dtype, device=q.device
|
103 |
-
)[:, :, -q.size(1) :, :].contiguous()
|
104 |
-
|
105 |
-
q = q.transpose(1, 2)
|
106 |
-
k = k.transpose(1, 2)
|
107 |
-
v = v.transpose(1, 2)
|
108 |
-
|
109 |
-
o: torch.Tensor = torch.nn.functional.scaled_dot_product_attention(
|
110 |
-
q, k, v, attn_mask=attention_mask
|
111 |
-
)
|
112 |
-
o = o.transpose(1, 2).flatten(-2, -1)
|
113 |
-
|
114 |
-
o = self.o_proj(o)
|
115 |
-
return o
|
116 |
-
|
117 |
-
|
118 |
-
class StepAudioMLP(torch.nn.Module):
|
119 |
-
def __init__(self, hidden_size, intermediate_size):
|
120 |
-
super().__init__()
|
121 |
-
self.gate_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
|
122 |
-
self.up_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
|
123 |
-
self.down_proj = torch.nn.Linear(intermediate_size, hidden_size, bias=False)
|
124 |
-
|
125 |
-
def forward(self, x):
|
126 |
-
gate = self.gate_proj(x)
|
127 |
-
up = self.up_proj(x)
|
128 |
-
x = torch.nn.functional.silu(gate) * up
|
129 |
-
x = self.down_proj(x)
|
130 |
-
return x
|
131 |
-
|
132 |
-
|
133 |
-
class StepAudioLayer(torch.nn.Module):
|
134 |
-
def __init__(self, config: StepAudioConfig, layer_idx: int):
|
135 |
-
super().__init__()
|
136 |
-
self.layer_idx = layer_idx
|
137 |
-
self.self_attn = StepAudioAttention(
|
138 |
-
hidden_size=config.hidden_size,
|
139 |
-
num_heads=config.num_attention_heads,
|
140 |
-
num_groups=config.num_attention_groups,
|
141 |
-
layer_idx=layer_idx,
|
142 |
-
)
|
143 |
-
self.mlp = StepAudioMLP(
|
144 |
-
hidden_size=config.hidden_size,
|
145 |
-
intermediate_size=config.intermediate_size,
|
146 |
-
)
|
147 |
-
self.input_layernorm = StepAudioRMSNorm(
|
148 |
-
hidden_size=config.hidden_size, eps=config.rms_norm_eps
|
149 |
-
)
|
150 |
-
self.post_attention_layernorm = StepAudioRMSNorm(
|
151 |
-
hidden_size=config.hidden_size, eps=config.rms_norm_eps
|
152 |
-
)
|
153 |
-
|
154 |
-
def forward(
|
155 |
-
self,
|
156 |
-
x,
|
157 |
-
attention_mask: Optional[torch.Tensor] = None,
|
158 |
-
past_key_value: Optional[Cache] = None,
|
159 |
-
cache_position: Optional[torch.LongTensor] = None,
|
160 |
-
):
|
161 |
-
def f(x):
|
162 |
-
x = self.input_layernorm(x)
|
163 |
-
x = self.self_attn(x, past_key_value, attention_mask, cache_position)
|
164 |
-
return x
|
165 |
-
|
166 |
-
x = x + f(x)
|
167 |
-
|
168 |
-
def f(x):
|
169 |
-
x = self.post_attention_layernorm(x)
|
170 |
-
x = self.mlp(x)
|
171 |
-
return x
|
172 |
-
|
173 |
-
x = x + f(x)
|
174 |
-
|
175 |
-
return x
|
176 |
-
|
177 |
-
|
178 |
-
class StepAudioPreTrainedModel(PreTrainedModel):
|
179 |
-
config_class = StepAudioConfig
|
180 |
-
base_model_prefix = "model"
|
181 |
-
supports_gradient_checkpointing = True
|
182 |
-
_no_split_modules = ["StepAudioLayer"]
|
183 |
-
_skip_keys_device_placement = ["past_key_values"]
|
184 |
-
_supports_cache_class = True
|
185 |
-
_supports_static_cache = True
|
186 |
-
|
187 |
-
def _init_weights(self, module):
|
188 |
-
std = self.config.initializer_range
|
189 |
-
if isinstance(module, nn.Linear):
|
190 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
191 |
-
if module.bias is not None:
|
192 |
-
module.bias.data.zero_()
|
193 |
-
elif isinstance(module, nn.Embedding):
|
194 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
195 |
-
if module.padding_idx is not None:
|
196 |
-
module.weight.data[module.padding_idx].zero_()
|
197 |
-
|
198 |
-
|
199 |
-
class StepAudioModel(StepAudioPreTrainedModel):
|
200 |
-
"""
|
201 |
-
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
202 |
-
|
203 |
-
Args:
|
204 |
-
config: StepAudioConfig
|
205 |
-
"""
|
206 |
-
|
207 |
-
def __init__(self, config: StepAudioConfig):
|
208 |
-
super().__init__(config)
|
209 |
-
self.config = config
|
210 |
-
self.embed_tokens = torch.nn.Embedding(config.vocab_size, config.hidden_size)
|
211 |
-
|
212 |
-
self.layers = torch.nn.Sequential(
|
213 |
-
*[
|
214 |
-
StepAudioLayer(config, layer_idx)
|
215 |
-
for layer_idx in range(config.num_hidden_layers)
|
216 |
-
]
|
217 |
-
)
|
218 |
-
|
219 |
-
self.norm = StepAudioRMSNorm(
|
220 |
-
hidden_size=config.hidden_size, eps=config.rms_norm_eps
|
221 |
-
)
|
222 |
-
|
223 |
-
# Initialize weights and apply final processing
|
224 |
-
self.post_init()
|
225 |
-
|
226 |
-
def get_input_embeddings(self):
|
227 |
-
return self.embed_tokens
|
228 |
-
|
229 |
-
def set_input_embeddings(self, value):
|
230 |
-
self.embed_tokens = value
|
231 |
-
|
232 |
-
def forward(
|
233 |
-
self,
|
234 |
-
input_ids: torch.LongTensor = None,
|
235 |
-
attention_mask: Optional[torch.Tensor] = None,
|
236 |
-
past_key_values: Optional[Cache] = None,
|
237 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
238 |
-
use_cache: Optional[bool] = None,
|
239 |
-
output_attentions: Optional[bool] = None,
|
240 |
-
output_hidden_states: Optional[bool] = None,
|
241 |
-
return_dict: Optional[bool] = None,
|
242 |
-
cache_position: Optional[torch.LongTensor] = None,
|
243 |
-
) -> Union[Tuple, BaseModelOutputWithPast]:
|
244 |
-
output_attentions = False
|
245 |
-
output_hidden_states = False
|
246 |
-
|
247 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
248 |
-
return_dict = (
|
249 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
250 |
-
)
|
251 |
-
|
252 |
-
if (input_ids is None) ^ (inputs_embeds is not None):
|
253 |
-
raise ValueError(
|
254 |
-
"You must specify exactly one of input_ids or inputs_embeds"
|
255 |
-
)
|
256 |
-
|
257 |
-
if inputs_embeds is None:
|
258 |
-
inputs_embeds = self.embed_tokens(input_ids)
|
259 |
-
|
260 |
-
if use_cache and past_key_values is None:
|
261 |
-
past_key_values = DynamicCache()
|
262 |
-
|
263 |
-
if cache_position is None:
|
264 |
-
past_seen_tokens = (
|
265 |
-
past_key_values.get_seq_length() if past_key_values is not None else 0
|
266 |
-
)
|
267 |
-
cache_position = torch.arange(
|
268 |
-
past_seen_tokens,
|
269 |
-
past_seen_tokens + inputs_embeds.shape[1],
|
270 |
-
device=inputs_embeds.device,
|
271 |
-
)
|
272 |
-
|
273 |
-
causal_mask = attention_mask
|
274 |
-
|
275 |
-
hidden_states = inputs_embeds
|
276 |
-
|
277 |
-
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
278 |
-
layer_outputs = decoder_layer(
|
279 |
-
hidden_states,
|
280 |
-
attention_mask=causal_mask,
|
281 |
-
past_key_value=past_key_values,
|
282 |
-
cache_position=cache_position,
|
283 |
-
)
|
284 |
-
|
285 |
-
hidden_states = layer_outputs
|
286 |
-
|
287 |
-
hidden_states = self.norm(hidden_states)
|
288 |
-
|
289 |
-
output = BaseModelOutputWithPast(
|
290 |
-
last_hidden_state=hidden_states,
|
291 |
-
past_key_values=past_key_values if use_cache else None,
|
292 |
-
hidden_states=hidden_states,
|
293 |
-
attentions=None,
|
294 |
-
)
|
295 |
-
return output if return_dict else output.to_tuple()
|
296 |
-
|
297 |
-
|
298 |
-
class StepAudioForCausalLM(StepAudioPreTrainedModel, GenerationMixin):
|
299 |
-
_tied_weights_keys = ["lm_head.weight"]
|
300 |
-
|
301 |
-
def __init__(self, config):
|
302 |
-
super().__init__(config)
|
303 |
-
self.model = StepAudioModel(config)
|
304 |
-
self.vocab_size = config.vocab_size
|
305 |
-
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
306 |
-
|
307 |
-
# Initialize weights and apply final processing
|
308 |
-
self.post_init()
|
309 |
-
|
310 |
-
def get_input_embeddings(self):
|
311 |
-
return self.model.embed_tokens
|
312 |
-
|
313 |
-
def set_input_embeddings(self, value):
|
314 |
-
self.model.embed_tokens = value
|
315 |
-
|
316 |
-
# def get_output_embeddings(self):
|
317 |
-
# return self.lm_head
|
318 |
-
|
319 |
-
# def set_output_embeddings(self, new_embeddings):
|
320 |
-
# self.lm_head = new_embeddings
|
321 |
-
|
322 |
-
def set_decoder(self, decoder):
|
323 |
-
self.model = decoder
|
324 |
-
|
325 |
-
def get_decoder(self):
|
326 |
-
return self.model
|
327 |
-
|
328 |
-
def forward(
|
329 |
-
self,
|
330 |
-
input_ids: torch.LongTensor = None,
|
331 |
-
attention_mask: Optional[torch.Tensor] = None,
|
332 |
-
position_ids: Optional[torch.LongTensor] = None,
|
333 |
-
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
334 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
335 |
-
labels: Optional[torch.LongTensor] = None,
|
336 |
-
use_cache: Optional[bool] = None,
|
337 |
-
output_attentions: Optional[bool] = None,
|
338 |
-
output_hidden_states: Optional[bool] = None,
|
339 |
-
return_dict: Optional[bool] = None,
|
340 |
-
cache_position: Optional[torch.LongTensor] = None,
|
341 |
-
num_logits_to_keep: int = 0,
|
342 |
-
) -> Union[Tuple, CausalLMOutputWithPast]:
|
343 |
-
# output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
344 |
-
output_attentions = False
|
345 |
-
output_hidden_states = False
|
346 |
-
# output_hidden_states = (
|
347 |
-
# output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
348 |
-
# )
|
349 |
-
return_dict = (
|
350 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
351 |
-
)
|
352 |
-
|
353 |
-
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
354 |
-
outputs = self.model(
|
355 |
-
input_ids=input_ids,
|
356 |
-
attention_mask=attention_mask,
|
357 |
-
past_key_values=past_key_values,
|
358 |
-
inputs_embeds=inputs_embeds,
|
359 |
-
use_cache=use_cache,
|
360 |
-
output_attentions=output_attentions,
|
361 |
-
output_hidden_states=output_hidden_states,
|
362 |
-
return_dict=return_dict,
|
363 |
-
cache_position=cache_position,
|
364 |
-
)
|
365 |
-
|
366 |
-
hidden_states = outputs[0]
|
367 |
-
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
368 |
-
|
369 |
-
logits = self.lm_head(hidden_states)
|
370 |
-
|
371 |
-
# logits = torch.matmul(hidden_states, lm_stat)
|
372 |
-
|
373 |
-
loss = None
|
374 |
-
if labels is not None:
|
375 |
-
loss = self.loss_function(
|
376 |
-
logits=logits,
|
377 |
-
labels=labels,
|
378 |
-
vocab_size=self.config.vocab_size,
|
379 |
-
**kwargs
|
380 |
-
)
|
381 |
-
|
382 |
-
if not return_dict:
|
383 |
-
output = (logits,) + outputs[1:]
|
384 |
-
return (loss,) + output if loss is not None else output
|
385 |
-
|
386 |
-
return CausalLMOutputWithPast(
|
387 |
-
loss=loss,
|
388 |
-
logits=logits,
|
389 |
-
past_key_values=outputs.past_key_values,
|
390 |
-
hidden_states=outputs.hidden_states,
|
391 |
-
attentions=outputs.attentions,
|
392 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|