stevez80 commited on
Commit
c21a7bd
1 Parent(s): c9c04d6

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +68 -1
README.md CHANGED
@@ -1,3 +1,70 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - merge
4
+ - mergekit
5
+ - lazymergekit
6
+ - samir-fama/SamirGPT-v1
7
+ - mlabonne/NeuralHermes-2.5-Mistral-7B
8
+ - KoboldAI/Mistral-7B-Erebus-v3
9
+ base_model:
10
+ - samir-fama/SamirGPT-v1
11
+ - mlabonne/NeuralHermes-2.5-Mistral-7B
12
+ - KoboldAI/Mistral-7B-Erebus-v3
13
  ---
14
+
15
+ # ErebusNeuralSamir-7B-dare-ties
16
+
17
+ ErebusNeuralSamir-7B-dare-ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
18
+ * [samir-fama/SamirGPT-v1](https://huggingface.co/samir-fama/SamirGPT-v1)
19
+ * [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B)
20
+ * [KoboldAI/Mistral-7B-Erebus-v3](https://huggingface.co/KoboldAI/Mistral-7B-Erebus-v3)
21
+
22
+ ## 🧩 Configuration
23
+
24
+ ```yaml
25
+ models:
26
+ - model: mistralai/Mistral-7B-v0.1
27
+ # No parameters necessary for base model
28
+ - model: samir-fama/SamirGPT-v1
29
+ parameters:
30
+ density: 0.53
31
+ weight: 0.3
32
+ - model: mlabonne/NeuralHermes-2.5-Mistral-7B
33
+ parameters:
34
+ density: 0.53
35
+ weight: 0.3
36
+ - model: KoboldAI/Mistral-7B-Erebus-v3
37
+ parameters:
38
+ density: 0.53
39
+ weight: 0.4
40
+ merge_method: dare_ties
41
+ base_model: mistralai/Mistral-7B-v0.1
42
+ parameters:
43
+ int8_mask: true
44
+ dtype: bfloat16
45
+ ```
46
+
47
+ ## 💻 Usage
48
+
49
+ ```python
50
+ !pip install -qU transformers accelerate
51
+
52
+ from transformers import AutoTokenizer
53
+ import transformers
54
+ import torch
55
+
56
+ model = "stevez80/ErebusNeuralSamir-7B-dare-ties"
57
+ messages = [{"role": "user", "content": "What is a large language model?"}]
58
+
59
+ tokenizer = AutoTokenizer.from_pretrained(model)
60
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
61
+ pipeline = transformers.pipeline(
62
+ "text-generation",
63
+ model=model,
64
+ torch_dtype=torch.float16,
65
+ device_map="auto",
66
+ )
67
+
68
+ outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
69
+ print(outputs[0]["generated_text"])
70
+ ```