--- tags: - merge - mergekit - lazymergekit - samir-fama/SamirGPT-v1 - mlabonne/NeuralHermes-2.5-Mistral-7B - KoboldAI/Mistral-7B-Erebus-v3 base_model: - samir-fama/SamirGPT-v1 - mlabonne/NeuralHermes-2.5-Mistral-7B - KoboldAI/Mistral-7B-Erebus-v3 --- # ErebusNeuralSamir-7B-dare-ties ErebusNeuralSamir-7B-dare-ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [samir-fama/SamirGPT-v1](https://huggingface.co/samir-fama/SamirGPT-v1) * [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) * [KoboldAI/Mistral-7B-Erebus-v3](https://huggingface.co/KoboldAI/Mistral-7B-Erebus-v3) ## 🧩 Configuration ```yaml models: - model: mistralai/Mistral-7B-v0.1 # No parameters necessary for base model - model: samir-fama/SamirGPT-v1 parameters: density: 0.53 weight: 0.3 - model: mlabonne/NeuralHermes-2.5-Mistral-7B parameters: density: 0.53 weight: 0.3 - model: KoboldAI/Mistral-7B-Erebus-v3 parameters: density: 0.53 weight: 0.4 merge_method: dare_ties base_model: mistralai/Mistral-7B-v0.1 parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "stevez80/ErebusNeuralSamir-7B-dare-ties" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```