File size: 11,623 Bytes
8206b09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
import unittest

import torch

from diffusers import (
    IFImg2ImgPipeline,
    IFImg2ImgSuperResolutionPipeline,
    IFInpaintingPipeline,
    IFInpaintingSuperResolutionPipeline,
    IFPipeline,
    IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device

from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin


@skip_mps
class IFPipelineFastTests(PipelineTesterMixin, IFPipelineTesterMixin, unittest.TestCase):
    pipeline_class = IFPipeline
    params = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"}
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
    required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}

    def get_dummy_components(self):
        return self._get_dummy_components()

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "output_type": "numpy",
        }

        return inputs

    def test_save_load_optional_components(self):
        self._test_save_load_optional_components()

    @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
    def test_save_load_float16(self):
        # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
        super().test_save_load_float16(expected_max_diff=1e-1)

    def test_attention_slicing_forward_pass(self):
        self._test_attention_slicing_forward_pass(expected_max_diff=1e-2)

    def test_save_load_local(self):
        self._test_save_load_local()

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(
            expected_max_diff=1e-2,
        )

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3)


@slow
@require_torch_gpu
class IFPipelineSlowTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_all(self):
        # if

        pipe_1 = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)

        pipe_2 = IFSuperResolutionPipeline.from_pretrained(
            "DeepFloyd/IF-II-L-v1.0", variant="fp16", torch_dtype=torch.float16, text_encoder=None, tokenizer=None
        )

        # pre compute text embeddings and remove T5 to save memory

        pipe_1.text_encoder.to("cuda")

        prompt_embeds, negative_prompt_embeds = pipe_1.encode_prompt("anime turtle", device="cuda")

        del pipe_1.tokenizer
        del pipe_1.text_encoder
        gc.collect()

        pipe_1.tokenizer = None
        pipe_1.text_encoder = None

        pipe_1.enable_model_cpu_offload()
        pipe_2.enable_model_cpu_offload()

        pipe_1.unet.set_attn_processor(AttnAddedKVProcessor())
        pipe_2.unet.set_attn_processor(AttnAddedKVProcessor())

        self._test_if(pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds)

        pipe_1.remove_all_hooks()
        pipe_2.remove_all_hooks()

        # img2img

        pipe_1 = IFImg2ImgPipeline(**pipe_1.components)
        pipe_2 = IFImg2ImgSuperResolutionPipeline(**pipe_2.components)

        pipe_1.enable_model_cpu_offload()
        pipe_2.enable_model_cpu_offload()

        pipe_1.unet.set_attn_processor(AttnAddedKVProcessor())
        pipe_2.unet.set_attn_processor(AttnAddedKVProcessor())

        self._test_if_img2img(pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds)

        pipe_1.remove_all_hooks()
        pipe_2.remove_all_hooks()

        # inpainting

        pipe_1 = IFInpaintingPipeline(**pipe_1.components)
        pipe_2 = IFInpaintingSuperResolutionPipeline(**pipe_2.components)

        pipe_1.enable_model_cpu_offload()
        pipe_2.enable_model_cpu_offload()

        pipe_1.unet.set_attn_processor(AttnAddedKVProcessor())
        pipe_2.unet.set_attn_processor(AttnAddedKVProcessor())

        self._test_if_inpainting(pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds)

    def _test_if(self, pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds):
        # pipeline 1

        _start_torch_memory_measurement()

        generator = torch.Generator(device="cpu").manual_seed(0)
        output = pipe_1(
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            num_inference_steps=2,
            generator=generator,
            output_type="np",
        )

        image = output.images[0]

        assert image.shape == (64, 64, 3)

        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes < 13 * 10**9

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy"
        )
        assert_mean_pixel_difference(image, expected_image)

        # pipeline 2

        _start_torch_memory_measurement()

        generator = torch.Generator(device="cpu").manual_seed(0)

        image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device)

        output = pipe_2(
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            image=image,
            generator=generator,
            num_inference_steps=2,
            output_type="np",
        )

        image = output.images[0]

        assert image.shape == (256, 256, 3)

        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes < 4 * 10**9

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy"
        )
        assert_mean_pixel_difference(image, expected_image)

    def _test_if_img2img(self, pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds):
        # pipeline 1

        _start_torch_memory_measurement()

        image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device)

        generator = torch.Generator(device="cpu").manual_seed(0)

        output = pipe_1(
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            image=image,
            num_inference_steps=2,
            generator=generator,
            output_type="np",
        )

        image = output.images[0]

        assert image.shape == (64, 64, 3)

        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes < 10 * 10**9

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy"
        )
        assert_mean_pixel_difference(image, expected_image)

        # pipeline 2

        _start_torch_memory_measurement()

        generator = torch.Generator(device="cpu").manual_seed(0)

        original_image = floats_tensor((1, 3, 256, 256), rng=random.Random(0)).to(torch_device)
        image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device)

        output = pipe_2(
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            image=image,
            original_image=original_image,
            generator=generator,
            num_inference_steps=2,
            output_type="np",
        )

        image = output.images[0]

        assert image.shape == (256, 256, 3)

        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes < 4 * 10**9

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy"
        )
        assert_mean_pixel_difference(image, expected_image)

    def _test_if_inpainting(self, pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds):
        # pipeline 1

        _start_torch_memory_measurement()

        image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device)
        mask_image = floats_tensor((1, 3, 64, 64), rng=random.Random(1)).to(torch_device)

        generator = torch.Generator(device="cpu").manual_seed(0)
        output = pipe_1(
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            image=image,
            mask_image=mask_image,
            num_inference_steps=2,
            generator=generator,
            output_type="np",
        )

        image = output.images[0]

        assert image.shape == (64, 64, 3)

        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes < 10 * 10**9

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy"
        )
        assert_mean_pixel_difference(image, expected_image)

        # pipeline 2

        _start_torch_memory_measurement()

        generator = torch.Generator(device="cpu").manual_seed(0)

        image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device)
        original_image = floats_tensor((1, 3, 256, 256), rng=random.Random(0)).to(torch_device)
        mask_image = floats_tensor((1, 3, 256, 256), rng=random.Random(1)).to(torch_device)

        output = pipe_2(
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            image=image,
            mask_image=mask_image,
            original_image=original_image,
            generator=generator,
            num_inference_steps=2,
            output_type="np",
        )

        image = output.images[0]

        assert image.shape == (256, 256, 3)

        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes < 4 * 10**9

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy"
        )
        assert_mean_pixel_difference(image, expected_image)


def _start_torch_memory_measurement():
    torch.cuda.empty_cache()
    torch.cuda.reset_max_memory_allocated()
    torch.cuda.reset_peak_memory_stats()