File size: 7,382 Bytes
8206b09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
    DPMSolverMultistepScheduler,
    TextToVideoSDPipeline,
    UNet3DConditionModel,
)
from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism

from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin


enable_full_determinism()


@skip_mps
class TextToVideoSDPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = TextToVideoSDPipeline
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
    # No `output_type`.
    required_optional_params = frozenset(
        [
            "num_inference_steps",
            "generator",
            "latents",
            "return_dict",
            "callback",
            "callback_steps",
        ]
    )

    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet3DConditionModel(
            block_out_channels=(32, 64, 64, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D"),
            up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D"),
            cross_attention_dim=32,
            attention_head_dim=4,
        )
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
            sample_size=128,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            hidden_act="gelu",
            projection_dim=512,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "pt",
        }
        return inputs

    def test_text_to_video_default_case(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = TextToVideoSDPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["output_type"] = "np"
        frames = sd_pipe(**inputs).frames
        image_slice = frames[0][-3:, -3:, -1]

        assert frames[0].shape == (64, 64, 3)
        expected_slice = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_attention_slicing_forward_pass(self):
        self._test_attention_slicing_forward_pass(test_mean_pixel_difference=False, expected_max_diff=3e-3)

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False, expected_max_diff=1e-2)

    # (todo): sayakpaul
    @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline.")
    def test_inference_batch_consistent(self):
        pass

    # (todo): sayakpaul
    @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline.")
    def test_inference_batch_single_identical(self):
        pass

    @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline.")
    def test_num_images_per_prompt(self):
        pass

    def test_progress_bar(self):
        return super().test_progress_bar()


@slow
@skip_mps
class TextToVideoSDPipelineSlowTests(unittest.TestCase):
    def test_full_model(self):
        expected_video = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy"
        )

        pipe = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b")
        pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
        pipe = pipe.to("cuda")

        prompt = "Spiderman is surfing"
        generator = torch.Generator(device="cpu").manual_seed(0)

        video_frames = pipe(prompt, generator=generator, num_inference_steps=25, output_type="pt").frames
        video = video_frames.cpu().numpy()

        assert np.abs(expected_video - video).mean() < 5e-2

    def test_two_step_model(self):
        expected_video = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy"
        )

        pipe = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b")
        pipe = pipe.to("cuda")

        prompt = "Spiderman is surfing"
        generator = torch.Generator(device="cpu").manual_seed(0)

        video_frames = pipe(prompt, generator=generator, num_inference_steps=2, output_type="pt").frames
        video = video_frames.cpu().numpy()

        assert np.abs(expected_video - video).mean() < 5e-2