|
import argparse |
|
import tempfile |
|
|
|
import torch |
|
from accelerate import load_checkpoint_and_dispatch |
|
from transformers import CLIPTextModelWithProjection, CLIPTokenizer |
|
|
|
from diffusers import UnCLIPPipeline, UNet2DConditionModel, UNet2DModel |
|
from diffusers.models.prior_transformer import PriorTransformer |
|
from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel |
|
from diffusers.schedulers.scheduling_unclip import UnCLIPScheduler |
|
|
|
|
|
""" |
|
Example - From the diffusers root directory: |
|
|
|
Download weights: |
|
```sh |
|
$ wget https://arena.kakaocdn.net/brainrepo/models/karlo-public/v1.0.0.alpha/efdf6206d8ed593961593dc029a8affa/decoder-ckpt-step%3D01000000-of-01000000.ckpt |
|
$ wget https://arena.kakaocdn.net/brainrepo/models/karlo-public/v1.0.0.alpha/4226b831ae0279020d134281f3c31590/improved-sr-ckpt-step%3D1.2M.ckpt |
|
$ wget https://arena.kakaocdn.net/brainrepo/models/karlo-public/v1.0.0.alpha/85626483eaca9f581e2a78d31ff905ca/prior-ckpt-step%3D01000000-of-01000000.ckpt |
|
$ wget https://arena.kakaocdn.net/brainrepo/models/karlo-public/v1.0.0.alpha/0b62380a75e56f073e2844ab5199153d/ViT-L-14_stats.th |
|
``` |
|
|
|
Convert the model: |
|
```sh |
|
$ python scripts/convert_kakao_brain_unclip_to_diffusers.py \ |
|
--decoder_checkpoint_path ./decoder-ckpt-step\=01000000-of-01000000.ckpt \ |
|
--super_res_unet_checkpoint_path ./improved-sr-ckpt-step\=1.2M.ckpt \ |
|
--prior_checkpoint_path ./prior-ckpt-step\=01000000-of-01000000.ckpt \ |
|
--clip_stat_path ./ViT-L-14_stats.th \ |
|
--dump_path <path where to save model> |
|
``` |
|
""" |
|
|
|
|
|
|
|
|
|
PRIOR_ORIGINAL_PREFIX = "model" |
|
|
|
|
|
PRIOR_CONFIG = {} |
|
|
|
|
|
def prior_model_from_original_config(): |
|
model = PriorTransformer(**PRIOR_CONFIG) |
|
|
|
return model |
|
|
|
|
|
def prior_original_checkpoint_to_diffusers_checkpoint(model, checkpoint, clip_stats_checkpoint): |
|
diffusers_checkpoint = {} |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
"time_embedding.linear_1.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.0.weight"], |
|
"time_embedding.linear_1.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.0.bias"], |
|
} |
|
) |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
"proj_in.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.clip_img_proj.weight"], |
|
"proj_in.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.clip_img_proj.bias"], |
|
} |
|
) |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
"embedding_proj.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.text_emb_proj.weight"], |
|
"embedding_proj.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.text_emb_proj.bias"], |
|
} |
|
) |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
"encoder_hidden_states_proj.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.text_enc_proj.weight"], |
|
"encoder_hidden_states_proj.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.text_enc_proj.bias"], |
|
} |
|
) |
|
|
|
|
|
diffusers_checkpoint.update({"positional_embedding": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.positional_embedding"]}) |
|
|
|
|
|
diffusers_checkpoint.update({"prd_embedding": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.prd_emb"]}) |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
"time_embedding.linear_2.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.2.weight"], |
|
"time_embedding.linear_2.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.2.bias"], |
|
} |
|
) |
|
|
|
|
|
for idx in range(len(model.transformer_blocks)): |
|
diffusers_transformer_prefix = f"transformer_blocks.{idx}" |
|
original_transformer_prefix = f"{PRIOR_ORIGINAL_PREFIX}.transformer.resblocks.{idx}" |
|
|
|
|
|
diffusers_attention_prefix = f"{diffusers_transformer_prefix}.attn1" |
|
original_attention_prefix = f"{original_transformer_prefix}.attn" |
|
diffusers_checkpoint.update( |
|
prior_attention_to_diffusers( |
|
checkpoint, |
|
diffusers_attention_prefix=diffusers_attention_prefix, |
|
original_attention_prefix=original_attention_prefix, |
|
attention_head_dim=model.attention_head_dim, |
|
) |
|
) |
|
|
|
|
|
diffusers_ff_prefix = f"{diffusers_transformer_prefix}.ff" |
|
original_ff_prefix = f"{original_transformer_prefix}.mlp" |
|
diffusers_checkpoint.update( |
|
prior_ff_to_diffusers( |
|
checkpoint, diffusers_ff_prefix=diffusers_ff_prefix, original_ff_prefix=original_ff_prefix |
|
) |
|
) |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
f"{diffusers_transformer_prefix}.norm1.weight": checkpoint[ |
|
f"{original_transformer_prefix}.ln_1.weight" |
|
], |
|
f"{diffusers_transformer_prefix}.norm1.bias": checkpoint[f"{original_transformer_prefix}.ln_1.bias"], |
|
} |
|
) |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
f"{diffusers_transformer_prefix}.norm3.weight": checkpoint[ |
|
f"{original_transformer_prefix}.ln_2.weight" |
|
], |
|
f"{diffusers_transformer_prefix}.norm3.bias": checkpoint[f"{original_transformer_prefix}.ln_2.bias"], |
|
} |
|
) |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
"norm_out.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.final_ln.weight"], |
|
"norm_out.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.final_ln.bias"], |
|
} |
|
) |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
"proj_to_clip_embeddings.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.out_proj.weight"], |
|
"proj_to_clip_embeddings.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.out_proj.bias"], |
|
} |
|
) |
|
|
|
|
|
clip_mean, clip_std = clip_stats_checkpoint |
|
clip_mean = clip_mean[None, :] |
|
clip_std = clip_std[None, :] |
|
|
|
diffusers_checkpoint.update({"clip_mean": clip_mean, "clip_std": clip_std}) |
|
|
|
return diffusers_checkpoint |
|
|
|
|
|
def prior_attention_to_diffusers( |
|
checkpoint, *, diffusers_attention_prefix, original_attention_prefix, attention_head_dim |
|
): |
|
diffusers_checkpoint = {} |
|
|
|
|
|
[q_weight, k_weight, v_weight], [q_bias, k_bias, v_bias] = split_attentions( |
|
weight=checkpoint[f"{original_attention_prefix}.c_qkv.weight"], |
|
bias=checkpoint[f"{original_attention_prefix}.c_qkv.bias"], |
|
split=3, |
|
chunk_size=attention_head_dim, |
|
) |
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
f"{diffusers_attention_prefix}.to_q.weight": q_weight, |
|
f"{diffusers_attention_prefix}.to_q.bias": q_bias, |
|
f"{diffusers_attention_prefix}.to_k.weight": k_weight, |
|
f"{diffusers_attention_prefix}.to_k.bias": k_bias, |
|
f"{diffusers_attention_prefix}.to_v.weight": v_weight, |
|
f"{diffusers_attention_prefix}.to_v.bias": v_bias, |
|
} |
|
) |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
f"{diffusers_attention_prefix}.to_out.0.weight": checkpoint[f"{original_attention_prefix}.c_proj.weight"], |
|
f"{diffusers_attention_prefix}.to_out.0.bias": checkpoint[f"{original_attention_prefix}.c_proj.bias"], |
|
} |
|
) |
|
|
|
return diffusers_checkpoint |
|
|
|
|
|
def prior_ff_to_diffusers(checkpoint, *, diffusers_ff_prefix, original_ff_prefix): |
|
diffusers_checkpoint = { |
|
|
|
f"{diffusers_ff_prefix}.net.{0}.proj.weight": checkpoint[f"{original_ff_prefix}.c_fc.weight"], |
|
f"{diffusers_ff_prefix}.net.{0}.proj.bias": checkpoint[f"{original_ff_prefix}.c_fc.bias"], |
|
|
|
f"{diffusers_ff_prefix}.net.{2}.weight": checkpoint[f"{original_ff_prefix}.c_proj.weight"], |
|
f"{diffusers_ff_prefix}.net.{2}.bias": checkpoint[f"{original_ff_prefix}.c_proj.bias"], |
|
} |
|
|
|
return diffusers_checkpoint |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
DECODER_ORIGINAL_PREFIX = "model" |
|
|
|
|
|
|
|
DECODER_CONFIG = { |
|
"sample_size": 64, |
|
"layers_per_block": 3, |
|
"down_block_types": ( |
|
"ResnetDownsampleBlock2D", |
|
"SimpleCrossAttnDownBlock2D", |
|
"SimpleCrossAttnDownBlock2D", |
|
"SimpleCrossAttnDownBlock2D", |
|
), |
|
"up_block_types": ( |
|
"SimpleCrossAttnUpBlock2D", |
|
"SimpleCrossAttnUpBlock2D", |
|
"SimpleCrossAttnUpBlock2D", |
|
"ResnetUpsampleBlock2D", |
|
), |
|
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn", |
|
"block_out_channels": (320, 640, 960, 1280), |
|
"in_channels": 3, |
|
"out_channels": 6, |
|
"cross_attention_dim": 1536, |
|
"class_embed_type": "identity", |
|
"attention_head_dim": 64, |
|
"resnet_time_scale_shift": "scale_shift", |
|
} |
|
|
|
|
|
def decoder_model_from_original_config(): |
|
model = UNet2DConditionModel(**DECODER_CONFIG) |
|
|
|
return model |
|
|
|
|
|
def decoder_original_checkpoint_to_diffusers_checkpoint(model, checkpoint): |
|
diffusers_checkpoint = {} |
|
|
|
original_unet_prefix = DECODER_ORIGINAL_PREFIX |
|
num_head_channels = DECODER_CONFIG["attention_head_dim"] |
|
|
|
diffusers_checkpoint.update(unet_time_embeddings(checkpoint, original_unet_prefix)) |
|
diffusers_checkpoint.update(unet_conv_in(checkpoint, original_unet_prefix)) |
|
|
|
|
|
|
|
original_down_block_idx = 1 |
|
|
|
for diffusers_down_block_idx in range(len(model.down_blocks)): |
|
checkpoint_update, num_original_down_blocks = unet_downblock_to_diffusers_checkpoint( |
|
model, |
|
checkpoint, |
|
diffusers_down_block_idx=diffusers_down_block_idx, |
|
original_down_block_idx=original_down_block_idx, |
|
original_unet_prefix=original_unet_prefix, |
|
num_head_channels=num_head_channels, |
|
) |
|
|
|
original_down_block_idx += num_original_down_blocks |
|
|
|
diffusers_checkpoint.update(checkpoint_update) |
|
|
|
|
|
|
|
diffusers_checkpoint.update( |
|
unet_midblock_to_diffusers_checkpoint( |
|
model, |
|
checkpoint, |
|
original_unet_prefix=original_unet_prefix, |
|
num_head_channels=num_head_channels, |
|
) |
|
) |
|
|
|
|
|
|
|
original_up_block_idx = 0 |
|
|
|
for diffusers_up_block_idx in range(len(model.up_blocks)): |
|
checkpoint_update, num_original_up_blocks = unet_upblock_to_diffusers_checkpoint( |
|
model, |
|
checkpoint, |
|
diffusers_up_block_idx=diffusers_up_block_idx, |
|
original_up_block_idx=original_up_block_idx, |
|
original_unet_prefix=original_unet_prefix, |
|
num_head_channels=num_head_channels, |
|
) |
|
|
|
original_up_block_idx += num_original_up_blocks |
|
|
|
diffusers_checkpoint.update(checkpoint_update) |
|
|
|
|
|
|
|
diffusers_checkpoint.update(unet_conv_norm_out(checkpoint, original_unet_prefix)) |
|
diffusers_checkpoint.update(unet_conv_out(checkpoint, original_unet_prefix)) |
|
|
|
return diffusers_checkpoint |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def text_proj_from_original_config(): |
|
|
|
|
|
time_embed_dim = DECODER_CONFIG["block_out_channels"][0] * 4 |
|
|
|
cross_attention_dim = DECODER_CONFIG["cross_attention_dim"] |
|
|
|
model = UnCLIPTextProjModel(time_embed_dim=time_embed_dim, cross_attention_dim=cross_attention_dim) |
|
|
|
return model |
|
|
|
|
|
|
|
def text_proj_original_checkpoint_to_diffusers_checkpoint(checkpoint): |
|
diffusers_checkpoint = { |
|
|
|
"encoder_hidden_states_proj.weight": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.text_seq_proj.0.weight"], |
|
"encoder_hidden_states_proj.bias": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.text_seq_proj.0.bias"], |
|
|
|
"text_encoder_hidden_states_norm.weight": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.text_seq_proj.1.weight"], |
|
"text_encoder_hidden_states_norm.bias": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.text_seq_proj.1.bias"], |
|
|
|
"clip_extra_context_tokens_proj.weight": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.clip_tok_proj.weight"], |
|
"clip_extra_context_tokens_proj.bias": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.clip_tok_proj.bias"], |
|
|
|
"embedding_proj.weight": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.text_feat_proj.weight"], |
|
"embedding_proj.bias": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.text_feat_proj.bias"], |
|
|
|
"learned_classifier_free_guidance_embeddings": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.cf_param"], |
|
|
|
"clip_image_embeddings_project_to_time_embeddings.weight": checkpoint[ |
|
f"{DECODER_ORIGINAL_PREFIX}.clip_emb.weight" |
|
], |
|
"clip_image_embeddings_project_to_time_embeddings.bias": checkpoint[ |
|
f"{DECODER_ORIGINAL_PREFIX}.clip_emb.bias" |
|
], |
|
} |
|
|
|
return diffusers_checkpoint |
|
|
|
|
|
|
|
|
|
|
|
|
|
SUPER_RES_UNET_FIRST_STEPS_PREFIX = "model_first_steps" |
|
|
|
SUPER_RES_UNET_FIRST_STEPS_CONFIG = { |
|
"sample_size": 256, |
|
"layers_per_block": 3, |
|
"down_block_types": ( |
|
"ResnetDownsampleBlock2D", |
|
"ResnetDownsampleBlock2D", |
|
"ResnetDownsampleBlock2D", |
|
"ResnetDownsampleBlock2D", |
|
), |
|
"up_block_types": ( |
|
"ResnetUpsampleBlock2D", |
|
"ResnetUpsampleBlock2D", |
|
"ResnetUpsampleBlock2D", |
|
"ResnetUpsampleBlock2D", |
|
), |
|
"block_out_channels": (320, 640, 960, 1280), |
|
"in_channels": 6, |
|
"out_channels": 3, |
|
"add_attention": False, |
|
} |
|
|
|
|
|
def super_res_unet_first_steps_model_from_original_config(): |
|
model = UNet2DModel(**SUPER_RES_UNET_FIRST_STEPS_CONFIG) |
|
|
|
return model |
|
|
|
|
|
def super_res_unet_first_steps_original_checkpoint_to_diffusers_checkpoint(model, checkpoint): |
|
diffusers_checkpoint = {} |
|
|
|
original_unet_prefix = SUPER_RES_UNET_FIRST_STEPS_PREFIX |
|
|
|
diffusers_checkpoint.update(unet_time_embeddings(checkpoint, original_unet_prefix)) |
|
diffusers_checkpoint.update(unet_conv_in(checkpoint, original_unet_prefix)) |
|
|
|
|
|
|
|
original_down_block_idx = 1 |
|
|
|
for diffusers_down_block_idx in range(len(model.down_blocks)): |
|
checkpoint_update, num_original_down_blocks = unet_downblock_to_diffusers_checkpoint( |
|
model, |
|
checkpoint, |
|
diffusers_down_block_idx=diffusers_down_block_idx, |
|
original_down_block_idx=original_down_block_idx, |
|
original_unet_prefix=original_unet_prefix, |
|
num_head_channels=None, |
|
) |
|
|
|
original_down_block_idx += num_original_down_blocks |
|
|
|
diffusers_checkpoint.update(checkpoint_update) |
|
|
|
diffusers_checkpoint.update( |
|
unet_midblock_to_diffusers_checkpoint( |
|
model, |
|
checkpoint, |
|
original_unet_prefix=original_unet_prefix, |
|
num_head_channels=None, |
|
) |
|
) |
|
|
|
|
|
|
|
original_up_block_idx = 0 |
|
|
|
for diffusers_up_block_idx in range(len(model.up_blocks)): |
|
checkpoint_update, num_original_up_blocks = unet_upblock_to_diffusers_checkpoint( |
|
model, |
|
checkpoint, |
|
diffusers_up_block_idx=diffusers_up_block_idx, |
|
original_up_block_idx=original_up_block_idx, |
|
original_unet_prefix=original_unet_prefix, |
|
num_head_channels=None, |
|
) |
|
|
|
original_up_block_idx += num_original_up_blocks |
|
|
|
diffusers_checkpoint.update(checkpoint_update) |
|
|
|
|
|
|
|
diffusers_checkpoint.update(unet_conv_norm_out(checkpoint, original_unet_prefix)) |
|
diffusers_checkpoint.update(unet_conv_out(checkpoint, original_unet_prefix)) |
|
|
|
return diffusers_checkpoint |
|
|
|
|
|
|
|
|
|
|
|
|
|
SUPER_RES_UNET_LAST_STEP_PREFIX = "model_last_step" |
|
|
|
SUPER_RES_UNET_LAST_STEP_CONFIG = { |
|
"sample_size": 256, |
|
"layers_per_block": 3, |
|
"down_block_types": ( |
|
"ResnetDownsampleBlock2D", |
|
"ResnetDownsampleBlock2D", |
|
"ResnetDownsampleBlock2D", |
|
"ResnetDownsampleBlock2D", |
|
), |
|
"up_block_types": ( |
|
"ResnetUpsampleBlock2D", |
|
"ResnetUpsampleBlock2D", |
|
"ResnetUpsampleBlock2D", |
|
"ResnetUpsampleBlock2D", |
|
), |
|
"block_out_channels": (320, 640, 960, 1280), |
|
"in_channels": 6, |
|
"out_channels": 3, |
|
"add_attention": False, |
|
} |
|
|
|
|
|
def super_res_unet_last_step_model_from_original_config(): |
|
model = UNet2DModel(**SUPER_RES_UNET_LAST_STEP_CONFIG) |
|
|
|
return model |
|
|
|
|
|
def super_res_unet_last_step_original_checkpoint_to_diffusers_checkpoint(model, checkpoint): |
|
diffusers_checkpoint = {} |
|
|
|
original_unet_prefix = SUPER_RES_UNET_LAST_STEP_PREFIX |
|
|
|
diffusers_checkpoint.update(unet_time_embeddings(checkpoint, original_unet_prefix)) |
|
diffusers_checkpoint.update(unet_conv_in(checkpoint, original_unet_prefix)) |
|
|
|
|
|
|
|
original_down_block_idx = 1 |
|
|
|
for diffusers_down_block_idx in range(len(model.down_blocks)): |
|
checkpoint_update, num_original_down_blocks = unet_downblock_to_diffusers_checkpoint( |
|
model, |
|
checkpoint, |
|
diffusers_down_block_idx=diffusers_down_block_idx, |
|
original_down_block_idx=original_down_block_idx, |
|
original_unet_prefix=original_unet_prefix, |
|
num_head_channels=None, |
|
) |
|
|
|
original_down_block_idx += num_original_down_blocks |
|
|
|
diffusers_checkpoint.update(checkpoint_update) |
|
|
|
diffusers_checkpoint.update( |
|
unet_midblock_to_diffusers_checkpoint( |
|
model, |
|
checkpoint, |
|
original_unet_prefix=original_unet_prefix, |
|
num_head_channels=None, |
|
) |
|
) |
|
|
|
|
|
|
|
original_up_block_idx = 0 |
|
|
|
for diffusers_up_block_idx in range(len(model.up_blocks)): |
|
checkpoint_update, num_original_up_blocks = unet_upblock_to_diffusers_checkpoint( |
|
model, |
|
checkpoint, |
|
diffusers_up_block_idx=diffusers_up_block_idx, |
|
original_up_block_idx=original_up_block_idx, |
|
original_unet_prefix=original_unet_prefix, |
|
num_head_channels=None, |
|
) |
|
|
|
original_up_block_idx += num_original_up_blocks |
|
|
|
diffusers_checkpoint.update(checkpoint_update) |
|
|
|
|
|
|
|
diffusers_checkpoint.update(unet_conv_norm_out(checkpoint, original_unet_prefix)) |
|
diffusers_checkpoint.update(unet_conv_out(checkpoint, original_unet_prefix)) |
|
|
|
return diffusers_checkpoint |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def unet_time_embeddings(checkpoint, original_unet_prefix): |
|
diffusers_checkpoint = {} |
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
"time_embedding.linear_1.weight": checkpoint[f"{original_unet_prefix}.time_embed.0.weight"], |
|
"time_embedding.linear_1.bias": checkpoint[f"{original_unet_prefix}.time_embed.0.bias"], |
|
"time_embedding.linear_2.weight": checkpoint[f"{original_unet_prefix}.time_embed.2.weight"], |
|
"time_embedding.linear_2.bias": checkpoint[f"{original_unet_prefix}.time_embed.2.bias"], |
|
} |
|
) |
|
|
|
return diffusers_checkpoint |
|
|
|
|
|
|
|
def unet_conv_in(checkpoint, original_unet_prefix): |
|
diffusers_checkpoint = {} |
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
"conv_in.weight": checkpoint[f"{original_unet_prefix}.input_blocks.0.0.weight"], |
|
"conv_in.bias": checkpoint[f"{original_unet_prefix}.input_blocks.0.0.bias"], |
|
} |
|
) |
|
|
|
return diffusers_checkpoint |
|
|
|
|
|
|
|
def unet_conv_norm_out(checkpoint, original_unet_prefix): |
|
diffusers_checkpoint = {} |
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
"conv_norm_out.weight": checkpoint[f"{original_unet_prefix}.out.0.weight"], |
|
"conv_norm_out.bias": checkpoint[f"{original_unet_prefix}.out.0.bias"], |
|
} |
|
) |
|
|
|
return diffusers_checkpoint |
|
|
|
|
|
|
|
def unet_conv_out(checkpoint, original_unet_prefix): |
|
diffusers_checkpoint = {} |
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
"conv_out.weight": checkpoint[f"{original_unet_prefix}.out.2.weight"], |
|
"conv_out.bias": checkpoint[f"{original_unet_prefix}.out.2.bias"], |
|
} |
|
) |
|
|
|
return diffusers_checkpoint |
|
|
|
|
|
|
|
def unet_downblock_to_diffusers_checkpoint( |
|
model, checkpoint, *, diffusers_down_block_idx, original_down_block_idx, original_unet_prefix, num_head_channels |
|
): |
|
diffusers_checkpoint = {} |
|
|
|
diffusers_resnet_prefix = f"down_blocks.{diffusers_down_block_idx}.resnets" |
|
original_down_block_prefix = f"{original_unet_prefix}.input_blocks" |
|
|
|
down_block = model.down_blocks[diffusers_down_block_idx] |
|
|
|
num_resnets = len(down_block.resnets) |
|
|
|
if down_block.downsamplers is None: |
|
downsampler = False |
|
else: |
|
assert len(down_block.downsamplers) == 1 |
|
downsampler = True |
|
|
|
num_resnets += 1 |
|
|
|
for resnet_idx_inc in range(num_resnets): |
|
full_resnet_prefix = f"{original_down_block_prefix}.{original_down_block_idx + resnet_idx_inc}.0" |
|
|
|
if downsampler and resnet_idx_inc == num_resnets - 1: |
|
|
|
full_diffusers_resnet_prefix = f"down_blocks.{diffusers_down_block_idx}.downsamplers.0" |
|
else: |
|
|
|
full_diffusers_resnet_prefix = f"{diffusers_resnet_prefix}.{resnet_idx_inc}" |
|
|
|
diffusers_checkpoint.update( |
|
resnet_to_diffusers_checkpoint( |
|
checkpoint, resnet_prefix=full_resnet_prefix, diffusers_resnet_prefix=full_diffusers_resnet_prefix |
|
) |
|
) |
|
|
|
if hasattr(down_block, "attentions"): |
|
num_attentions = len(down_block.attentions) |
|
diffusers_attention_prefix = f"down_blocks.{diffusers_down_block_idx}.attentions" |
|
|
|
for attention_idx_inc in range(num_attentions): |
|
full_attention_prefix = f"{original_down_block_prefix}.{original_down_block_idx + attention_idx_inc}.1" |
|
full_diffusers_attention_prefix = f"{diffusers_attention_prefix}.{attention_idx_inc}" |
|
|
|
diffusers_checkpoint.update( |
|
attention_to_diffusers_checkpoint( |
|
checkpoint, |
|
attention_prefix=full_attention_prefix, |
|
diffusers_attention_prefix=full_diffusers_attention_prefix, |
|
num_head_channels=num_head_channels, |
|
) |
|
) |
|
|
|
num_original_down_blocks = num_resnets |
|
|
|
return diffusers_checkpoint, num_original_down_blocks |
|
|
|
|
|
|
|
def unet_midblock_to_diffusers_checkpoint(model, checkpoint, *, original_unet_prefix, num_head_channels): |
|
diffusers_checkpoint = {} |
|
|
|
|
|
|
|
original_block_idx = 0 |
|
|
|
diffusers_checkpoint.update( |
|
resnet_to_diffusers_checkpoint( |
|
checkpoint, |
|
diffusers_resnet_prefix="mid_block.resnets.0", |
|
resnet_prefix=f"{original_unet_prefix}.middle_block.{original_block_idx}", |
|
) |
|
) |
|
|
|
original_block_idx += 1 |
|
|
|
|
|
|
|
if hasattr(model.mid_block, "attentions") and model.mid_block.attentions[0] is not None: |
|
diffusers_checkpoint.update( |
|
attention_to_diffusers_checkpoint( |
|
checkpoint, |
|
diffusers_attention_prefix="mid_block.attentions.0", |
|
attention_prefix=f"{original_unet_prefix}.middle_block.{original_block_idx}", |
|
num_head_channels=num_head_channels, |
|
) |
|
) |
|
original_block_idx += 1 |
|
|
|
|
|
|
|
diffusers_checkpoint.update( |
|
resnet_to_diffusers_checkpoint( |
|
checkpoint, |
|
diffusers_resnet_prefix="mid_block.resnets.1", |
|
resnet_prefix=f"{original_unet_prefix}.middle_block.{original_block_idx}", |
|
) |
|
) |
|
|
|
return diffusers_checkpoint |
|
|
|
|
|
|
|
def unet_upblock_to_diffusers_checkpoint( |
|
model, checkpoint, *, diffusers_up_block_idx, original_up_block_idx, original_unet_prefix, num_head_channels |
|
): |
|
diffusers_checkpoint = {} |
|
|
|
diffusers_resnet_prefix = f"up_blocks.{diffusers_up_block_idx}.resnets" |
|
original_up_block_prefix = f"{original_unet_prefix}.output_blocks" |
|
|
|
up_block = model.up_blocks[diffusers_up_block_idx] |
|
|
|
num_resnets = len(up_block.resnets) |
|
|
|
if up_block.upsamplers is None: |
|
upsampler = False |
|
else: |
|
assert len(up_block.upsamplers) == 1 |
|
upsampler = True |
|
|
|
num_resnets += 1 |
|
|
|
has_attentions = hasattr(up_block, "attentions") |
|
|
|
for resnet_idx_inc in range(num_resnets): |
|
if upsampler and resnet_idx_inc == num_resnets - 1: |
|
|
|
if has_attentions: |
|
|
|
original_resnet_block_idx = 2 |
|
else: |
|
original_resnet_block_idx = 1 |
|
|
|
|
|
full_resnet_prefix = ( |
|
f"{original_up_block_prefix}.{original_up_block_idx + resnet_idx_inc - 1}.{original_resnet_block_idx}" |
|
) |
|
|
|
full_diffusers_resnet_prefix = f"up_blocks.{diffusers_up_block_idx}.upsamplers.0" |
|
else: |
|
|
|
full_resnet_prefix = f"{original_up_block_prefix}.{original_up_block_idx + resnet_idx_inc}.0" |
|
full_diffusers_resnet_prefix = f"{diffusers_resnet_prefix}.{resnet_idx_inc}" |
|
|
|
diffusers_checkpoint.update( |
|
resnet_to_diffusers_checkpoint( |
|
checkpoint, resnet_prefix=full_resnet_prefix, diffusers_resnet_prefix=full_diffusers_resnet_prefix |
|
) |
|
) |
|
|
|
if has_attentions: |
|
num_attentions = len(up_block.attentions) |
|
diffusers_attention_prefix = f"up_blocks.{diffusers_up_block_idx}.attentions" |
|
|
|
for attention_idx_inc in range(num_attentions): |
|
full_attention_prefix = f"{original_up_block_prefix}.{original_up_block_idx + attention_idx_inc}.1" |
|
full_diffusers_attention_prefix = f"{diffusers_attention_prefix}.{attention_idx_inc}" |
|
|
|
diffusers_checkpoint.update( |
|
attention_to_diffusers_checkpoint( |
|
checkpoint, |
|
attention_prefix=full_attention_prefix, |
|
diffusers_attention_prefix=full_diffusers_attention_prefix, |
|
num_head_channels=num_head_channels, |
|
) |
|
) |
|
|
|
num_original_down_blocks = num_resnets - 1 if upsampler else num_resnets |
|
|
|
return diffusers_checkpoint, num_original_down_blocks |
|
|
|
|
|
def resnet_to_diffusers_checkpoint(checkpoint, *, diffusers_resnet_prefix, resnet_prefix): |
|
diffusers_checkpoint = { |
|
f"{diffusers_resnet_prefix}.norm1.weight": checkpoint[f"{resnet_prefix}.in_layers.0.weight"], |
|
f"{diffusers_resnet_prefix}.norm1.bias": checkpoint[f"{resnet_prefix}.in_layers.0.bias"], |
|
f"{diffusers_resnet_prefix}.conv1.weight": checkpoint[f"{resnet_prefix}.in_layers.2.weight"], |
|
f"{diffusers_resnet_prefix}.conv1.bias": checkpoint[f"{resnet_prefix}.in_layers.2.bias"], |
|
f"{diffusers_resnet_prefix}.time_emb_proj.weight": checkpoint[f"{resnet_prefix}.emb_layers.1.weight"], |
|
f"{diffusers_resnet_prefix}.time_emb_proj.bias": checkpoint[f"{resnet_prefix}.emb_layers.1.bias"], |
|
f"{diffusers_resnet_prefix}.norm2.weight": checkpoint[f"{resnet_prefix}.out_layers.0.weight"], |
|
f"{diffusers_resnet_prefix}.norm2.bias": checkpoint[f"{resnet_prefix}.out_layers.0.bias"], |
|
f"{diffusers_resnet_prefix}.conv2.weight": checkpoint[f"{resnet_prefix}.out_layers.3.weight"], |
|
f"{diffusers_resnet_prefix}.conv2.bias": checkpoint[f"{resnet_prefix}.out_layers.3.bias"], |
|
} |
|
|
|
skip_connection_prefix = f"{resnet_prefix}.skip_connection" |
|
|
|
if f"{skip_connection_prefix}.weight" in checkpoint: |
|
diffusers_checkpoint.update( |
|
{ |
|
f"{diffusers_resnet_prefix}.conv_shortcut.weight": checkpoint[f"{skip_connection_prefix}.weight"], |
|
f"{diffusers_resnet_prefix}.conv_shortcut.bias": checkpoint[f"{skip_connection_prefix}.bias"], |
|
} |
|
) |
|
|
|
return diffusers_checkpoint |
|
|
|
|
|
def attention_to_diffusers_checkpoint(checkpoint, *, diffusers_attention_prefix, attention_prefix, num_head_channels): |
|
diffusers_checkpoint = {} |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
f"{diffusers_attention_prefix}.group_norm.weight": checkpoint[f"{attention_prefix}.norm.weight"], |
|
f"{diffusers_attention_prefix}.group_norm.bias": checkpoint[f"{attention_prefix}.norm.bias"], |
|
} |
|
) |
|
|
|
|
|
[q_weight, k_weight, v_weight], [q_bias, k_bias, v_bias] = split_attentions( |
|
weight=checkpoint[f"{attention_prefix}.qkv.weight"][:, :, 0], |
|
bias=checkpoint[f"{attention_prefix}.qkv.bias"], |
|
split=3, |
|
chunk_size=num_head_channels, |
|
) |
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
f"{diffusers_attention_prefix}.to_q.weight": q_weight, |
|
f"{diffusers_attention_prefix}.to_q.bias": q_bias, |
|
f"{diffusers_attention_prefix}.to_k.weight": k_weight, |
|
f"{diffusers_attention_prefix}.to_k.bias": k_bias, |
|
f"{diffusers_attention_prefix}.to_v.weight": v_weight, |
|
f"{diffusers_attention_prefix}.to_v.bias": v_bias, |
|
} |
|
) |
|
|
|
|
|
[encoder_k_weight, encoder_v_weight], [encoder_k_bias, encoder_v_bias] = split_attentions( |
|
weight=checkpoint[f"{attention_prefix}.encoder_kv.weight"][:, :, 0], |
|
bias=checkpoint[f"{attention_prefix}.encoder_kv.bias"], |
|
split=2, |
|
chunk_size=num_head_channels, |
|
) |
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
f"{diffusers_attention_prefix}.add_k_proj.weight": encoder_k_weight, |
|
f"{diffusers_attention_prefix}.add_k_proj.bias": encoder_k_bias, |
|
f"{diffusers_attention_prefix}.add_v_proj.weight": encoder_v_weight, |
|
f"{diffusers_attention_prefix}.add_v_proj.bias": encoder_v_bias, |
|
} |
|
) |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
f"{diffusers_attention_prefix}.to_out.0.weight": checkpoint[f"{attention_prefix}.proj_out.weight"][ |
|
:, :, 0 |
|
], |
|
f"{diffusers_attention_prefix}.to_out.0.bias": checkpoint[f"{attention_prefix}.proj_out.bias"], |
|
} |
|
) |
|
|
|
return diffusers_checkpoint |
|
|
|
|
|
|
|
def split_attentions(*, weight, bias, split, chunk_size): |
|
weights = [None] * split |
|
biases = [None] * split |
|
|
|
weights_biases_idx = 0 |
|
|
|
for starting_row_index in range(0, weight.shape[0], chunk_size): |
|
row_indices = torch.arange(starting_row_index, starting_row_index + chunk_size) |
|
|
|
weight_rows = weight[row_indices, :] |
|
bias_rows = bias[row_indices] |
|
|
|
if weights[weights_biases_idx] is None: |
|
assert weights[weights_biases_idx] is None |
|
weights[weights_biases_idx] = weight_rows |
|
biases[weights_biases_idx] = bias_rows |
|
else: |
|
assert weights[weights_biases_idx] is not None |
|
weights[weights_biases_idx] = torch.concat([weights[weights_biases_idx], weight_rows]) |
|
biases[weights_biases_idx] = torch.concat([biases[weights_biases_idx], bias_rows]) |
|
|
|
weights_biases_idx = (weights_biases_idx + 1) % split |
|
|
|
return weights, biases |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def text_encoder(): |
|
print("loading CLIP text encoder") |
|
|
|
clip_name = "openai/clip-vit-large-patch14" |
|
|
|
|
|
pad_token = "!" |
|
|
|
tokenizer_model = CLIPTokenizer.from_pretrained(clip_name, pad_token=pad_token, device_map="auto") |
|
|
|
assert tokenizer_model.convert_tokens_to_ids(pad_token) == 0 |
|
|
|
text_encoder_model = CLIPTextModelWithProjection.from_pretrained( |
|
clip_name, |
|
|
|
|
|
) |
|
|
|
print("done loading CLIP text encoder") |
|
|
|
return text_encoder_model, tokenizer_model |
|
|
|
|
|
def prior(*, args, checkpoint_map_location): |
|
print("loading prior") |
|
|
|
prior_checkpoint = torch.load(args.prior_checkpoint_path, map_location=checkpoint_map_location) |
|
prior_checkpoint = prior_checkpoint["state_dict"] |
|
|
|
clip_stats_checkpoint = torch.load(args.clip_stat_path, map_location=checkpoint_map_location) |
|
|
|
prior_model = prior_model_from_original_config() |
|
|
|
prior_diffusers_checkpoint = prior_original_checkpoint_to_diffusers_checkpoint( |
|
prior_model, prior_checkpoint, clip_stats_checkpoint |
|
) |
|
|
|
del prior_checkpoint |
|
del clip_stats_checkpoint |
|
|
|
load_checkpoint_to_model(prior_diffusers_checkpoint, prior_model, strict=True) |
|
|
|
print("done loading prior") |
|
|
|
return prior_model |
|
|
|
|
|
def decoder(*, args, checkpoint_map_location): |
|
print("loading decoder") |
|
|
|
decoder_checkpoint = torch.load(args.decoder_checkpoint_path, map_location=checkpoint_map_location) |
|
decoder_checkpoint = decoder_checkpoint["state_dict"] |
|
|
|
decoder_model = decoder_model_from_original_config() |
|
|
|
decoder_diffusers_checkpoint = decoder_original_checkpoint_to_diffusers_checkpoint( |
|
decoder_model, decoder_checkpoint |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
text_proj_model = text_proj_from_original_config() |
|
|
|
text_proj_checkpoint = text_proj_original_checkpoint_to_diffusers_checkpoint(decoder_checkpoint) |
|
|
|
load_checkpoint_to_model(text_proj_checkpoint, text_proj_model, strict=True) |
|
|
|
|
|
|
|
del decoder_checkpoint |
|
|
|
load_checkpoint_to_model(decoder_diffusers_checkpoint, decoder_model, strict=True) |
|
|
|
print("done loading decoder") |
|
|
|
return decoder_model, text_proj_model |
|
|
|
|
|
def super_res_unet(*, args, checkpoint_map_location): |
|
print("loading super resolution unet") |
|
|
|
super_res_checkpoint = torch.load(args.super_res_unet_checkpoint_path, map_location=checkpoint_map_location) |
|
super_res_checkpoint = super_res_checkpoint["state_dict"] |
|
|
|
|
|
|
|
super_res_first_model = super_res_unet_first_steps_model_from_original_config() |
|
|
|
super_res_first_steps_checkpoint = super_res_unet_first_steps_original_checkpoint_to_diffusers_checkpoint( |
|
super_res_first_model, super_res_checkpoint |
|
) |
|
|
|
|
|
super_res_last_model = super_res_unet_last_step_model_from_original_config() |
|
|
|
super_res_last_step_checkpoint = super_res_unet_last_step_original_checkpoint_to_diffusers_checkpoint( |
|
super_res_last_model, super_res_checkpoint |
|
) |
|
|
|
del super_res_checkpoint |
|
|
|
load_checkpoint_to_model(super_res_first_steps_checkpoint, super_res_first_model, strict=True) |
|
|
|
load_checkpoint_to_model(super_res_last_step_checkpoint, super_res_last_model, strict=True) |
|
|
|
print("done loading super resolution unet") |
|
|
|
return super_res_first_model, super_res_last_model |
|
|
|
|
|
def load_checkpoint_to_model(checkpoint, model, strict=False): |
|
with tempfile.NamedTemporaryFile() as file: |
|
torch.save(checkpoint, file.name) |
|
del checkpoint |
|
if strict: |
|
model.load_state_dict(torch.load(file.name), strict=True) |
|
else: |
|
load_checkpoint_and_dispatch(model, file.name, device_map="auto") |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") |
|
|
|
parser.add_argument( |
|
"--prior_checkpoint_path", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="Path to the prior checkpoint to convert.", |
|
) |
|
|
|
parser.add_argument( |
|
"--decoder_checkpoint_path", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="Path to the decoder checkpoint to convert.", |
|
) |
|
|
|
parser.add_argument( |
|
"--super_res_unet_checkpoint_path", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="Path to the super resolution checkpoint to convert.", |
|
) |
|
|
|
parser.add_argument( |
|
"--clip_stat_path", default=None, type=str, required=True, help="Path to the clip stats checkpoint to convert." |
|
) |
|
|
|
parser.add_argument( |
|
"--checkpoint_load_device", |
|
default="cpu", |
|
type=str, |
|
required=False, |
|
help="The device passed to `map_location` when loading checkpoints.", |
|
) |
|
|
|
parser.add_argument( |
|
"--debug", |
|
default=None, |
|
type=str, |
|
required=False, |
|
help="Only run a specific stage of the convert script. Used for debugging", |
|
) |
|
|
|
args = parser.parse_args() |
|
|
|
print(f"loading checkpoints to {args.checkpoint_load_device}") |
|
|
|
checkpoint_map_location = torch.device(args.checkpoint_load_device) |
|
|
|
if args.debug is not None: |
|
print(f"debug: only executing {args.debug}") |
|
|
|
if args.debug is None: |
|
text_encoder_model, tokenizer_model = text_encoder() |
|
|
|
prior_model = prior(args=args, checkpoint_map_location=checkpoint_map_location) |
|
|
|
decoder_model, text_proj_model = decoder(args=args, checkpoint_map_location=checkpoint_map_location) |
|
|
|
super_res_first_model, super_res_last_model = super_res_unet( |
|
args=args, checkpoint_map_location=checkpoint_map_location |
|
) |
|
|
|
prior_scheduler = UnCLIPScheduler( |
|
variance_type="fixed_small_log", |
|
prediction_type="sample", |
|
num_train_timesteps=1000, |
|
clip_sample_range=5.0, |
|
) |
|
|
|
decoder_scheduler = UnCLIPScheduler( |
|
variance_type="learned_range", |
|
prediction_type="epsilon", |
|
num_train_timesteps=1000, |
|
) |
|
|
|
super_res_scheduler = UnCLIPScheduler( |
|
variance_type="fixed_small_log", |
|
prediction_type="epsilon", |
|
num_train_timesteps=1000, |
|
) |
|
|
|
print(f"saving Kakao Brain unCLIP to {args.dump_path}") |
|
|
|
pipe = UnCLIPPipeline( |
|
prior=prior_model, |
|
decoder=decoder_model, |
|
text_proj=text_proj_model, |
|
tokenizer=tokenizer_model, |
|
text_encoder=text_encoder_model, |
|
super_res_first=super_res_first_model, |
|
super_res_last=super_res_last_model, |
|
prior_scheduler=prior_scheduler, |
|
decoder_scheduler=decoder_scheduler, |
|
super_res_scheduler=super_res_scheduler, |
|
) |
|
pipe.save_pretrained(args.dump_path) |
|
|
|
print("done writing Kakao Brain unCLIP") |
|
elif args.debug == "text_encoder": |
|
text_encoder_model, tokenizer_model = text_encoder() |
|
elif args.debug == "prior": |
|
prior_model = prior(args=args, checkpoint_map_location=checkpoint_map_location) |
|
elif args.debug == "decoder": |
|
decoder_model, text_proj_model = decoder(args=args, checkpoint_map_location=checkpoint_map_location) |
|
elif args.debug == "super_res_unet": |
|
super_res_first_model, super_res_last_model = super_res_unet( |
|
args=args, checkpoint_map_location=checkpoint_map_location |
|
) |
|
else: |
|
raise ValueError(f"unknown debug value : {args.debug}") |
|
|