|
""" |
|
This script ports models from VQ-diffusion (https://github.com/microsoft/VQ-Diffusion) to diffusers. |
|
|
|
It currently only supports porting the ITHQ dataset. |
|
|
|
ITHQ dataset: |
|
```sh |
|
# From the root directory of diffusers. |
|
|
|
# Download the VQVAE checkpoint |
|
$ wget https://facevcstandard.blob.core.windows.net/v-zhictang/Improved-VQ-Diffusion_model_release/ithq_vqvae.pth?sv=2020-10-02&st=2022-05-30T15%3A17%3A18Z&se=2030-05-31T15%3A17%3A00Z&sr=b&sp=r&sig=1jVavHFPpUjDs%2FTO1V3PTezaNbPp2Nx8MxiWI7y6fEY%3D -O ithq_vqvae.pth |
|
|
|
# Download the VQVAE config |
|
# NOTE that in VQ-diffusion the documented file is `configs/ithq.yaml` but the target class |
|
# `image_synthesis.modeling.codecs.image_codec.ema_vqvae.PatchVQVAE` |
|
# loads `OUTPUT/pretrained_model/taming_dvae/config.yaml` |
|
$ wget https://raw.githubusercontent.com/microsoft/VQ-Diffusion/main/OUTPUT/pretrained_model/taming_dvae/config.yaml -O ithq_vqvae.yaml |
|
|
|
# Download the main model checkpoint |
|
$ wget https://facevcstandard.blob.core.windows.net/v-zhictang/Improved-VQ-Diffusion_model_release/ithq_learnable.pth?sv=2020-10-02&st=2022-05-30T10%3A22%3A06Z&se=2030-05-31T10%3A22%3A00Z&sr=b&sp=r&sig=GOE%2Bza02%2FPnGxYVOOPtwrTR4RA3%2F5NVgMxdW4kjaEZ8%3D -O ithq_learnable.pth |
|
|
|
# Download the main model config |
|
$ wget https://raw.githubusercontent.com/microsoft/VQ-Diffusion/main/configs/ithq.yaml -O ithq.yaml |
|
|
|
# run the convert script |
|
$ python ./scripts/convert_vq_diffusion_to_diffusers.py \ |
|
--checkpoint_path ./ithq_learnable.pth \ |
|
--original_config_file ./ithq.yaml \ |
|
--vqvae_checkpoint_path ./ithq_vqvae.pth \ |
|
--vqvae_original_config_file ./ithq_vqvae.yaml \ |
|
--dump_path <path to save pre-trained `VQDiffusionPipeline`> |
|
``` |
|
""" |
|
|
|
import argparse |
|
import tempfile |
|
|
|
import torch |
|
import yaml |
|
from accelerate import init_empty_weights, load_checkpoint_and_dispatch |
|
from transformers import CLIPTextModel, CLIPTokenizer |
|
from yaml.loader import FullLoader |
|
|
|
from diffusers import Transformer2DModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel |
|
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings |
|
|
|
|
|
try: |
|
from omegaconf import OmegaConf |
|
except ImportError: |
|
raise ImportError( |
|
"OmegaConf is required to convert the VQ Diffusion checkpoints. Please install it with `pip install" |
|
" OmegaConf`." |
|
) |
|
|
|
|
|
|
|
PORTED_VQVAES = ["image_synthesis.modeling.codecs.image_codec.patch_vqgan.PatchVQGAN"] |
|
|
|
|
|
def vqvae_model_from_original_config(original_config): |
|
assert original_config.target in PORTED_VQVAES, f"{original_config.target} has not yet been ported to diffusers." |
|
|
|
original_config = original_config.params |
|
|
|
original_encoder_config = original_config.encoder_config.params |
|
original_decoder_config = original_config.decoder_config.params |
|
|
|
in_channels = original_encoder_config.in_channels |
|
out_channels = original_decoder_config.out_ch |
|
|
|
down_block_types = get_down_block_types(original_encoder_config) |
|
up_block_types = get_up_block_types(original_decoder_config) |
|
|
|
assert original_encoder_config.ch == original_decoder_config.ch |
|
assert original_encoder_config.ch_mult == original_decoder_config.ch_mult |
|
block_out_channels = tuple( |
|
[original_encoder_config.ch * a_ch_mult for a_ch_mult in original_encoder_config.ch_mult] |
|
) |
|
|
|
assert original_encoder_config.num_res_blocks == original_decoder_config.num_res_blocks |
|
layers_per_block = original_encoder_config.num_res_blocks |
|
|
|
assert original_encoder_config.z_channels == original_decoder_config.z_channels |
|
latent_channels = original_encoder_config.z_channels |
|
|
|
num_vq_embeddings = original_config.n_embed |
|
|
|
|
|
norm_num_groups = 32 |
|
|
|
e_dim = original_config.embed_dim |
|
|
|
model = VQModel( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
down_block_types=down_block_types, |
|
up_block_types=up_block_types, |
|
block_out_channels=block_out_channels, |
|
layers_per_block=layers_per_block, |
|
latent_channels=latent_channels, |
|
num_vq_embeddings=num_vq_embeddings, |
|
norm_num_groups=norm_num_groups, |
|
vq_embed_dim=e_dim, |
|
) |
|
|
|
return model |
|
|
|
|
|
def get_down_block_types(original_encoder_config): |
|
attn_resolutions = coerce_attn_resolutions(original_encoder_config.attn_resolutions) |
|
num_resolutions = len(original_encoder_config.ch_mult) |
|
resolution = coerce_resolution(original_encoder_config.resolution) |
|
|
|
curr_res = resolution |
|
down_block_types = [] |
|
|
|
for _ in range(num_resolutions): |
|
if curr_res in attn_resolutions: |
|
down_block_type = "AttnDownEncoderBlock2D" |
|
else: |
|
down_block_type = "DownEncoderBlock2D" |
|
|
|
down_block_types.append(down_block_type) |
|
|
|
curr_res = [r // 2 for r in curr_res] |
|
|
|
return down_block_types |
|
|
|
|
|
def get_up_block_types(original_decoder_config): |
|
attn_resolutions = coerce_attn_resolutions(original_decoder_config.attn_resolutions) |
|
num_resolutions = len(original_decoder_config.ch_mult) |
|
resolution = coerce_resolution(original_decoder_config.resolution) |
|
|
|
curr_res = [r // 2 ** (num_resolutions - 1) for r in resolution] |
|
up_block_types = [] |
|
|
|
for _ in reversed(range(num_resolutions)): |
|
if curr_res in attn_resolutions: |
|
up_block_type = "AttnUpDecoderBlock2D" |
|
else: |
|
up_block_type = "UpDecoderBlock2D" |
|
|
|
up_block_types.append(up_block_type) |
|
|
|
curr_res = [r * 2 for r in curr_res] |
|
|
|
return up_block_types |
|
|
|
|
|
def coerce_attn_resolutions(attn_resolutions): |
|
attn_resolutions = OmegaConf.to_object(attn_resolutions) |
|
attn_resolutions_ = [] |
|
for ar in attn_resolutions: |
|
if isinstance(ar, (list, tuple)): |
|
attn_resolutions_.append(list(ar)) |
|
else: |
|
attn_resolutions_.append([ar, ar]) |
|
return attn_resolutions_ |
|
|
|
|
|
def coerce_resolution(resolution): |
|
resolution = OmegaConf.to_object(resolution) |
|
if isinstance(resolution, int): |
|
resolution = [resolution, resolution] |
|
elif isinstance(resolution, (tuple, list)): |
|
resolution = list(resolution) |
|
else: |
|
raise ValueError("Unknown type of resolution:", resolution) |
|
return resolution |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def vqvae_original_checkpoint_to_diffusers_checkpoint(model, checkpoint): |
|
diffusers_checkpoint = {} |
|
|
|
diffusers_checkpoint.update(vqvae_encoder_to_diffusers_checkpoint(model, checkpoint)) |
|
|
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
"quant_conv.weight": checkpoint["quant_conv.weight"], |
|
"quant_conv.bias": checkpoint["quant_conv.bias"], |
|
} |
|
) |
|
|
|
|
|
diffusers_checkpoint.update({"quantize.embedding.weight": checkpoint["quantize.embedding"]}) |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
"post_quant_conv.weight": checkpoint["post_quant_conv.weight"], |
|
"post_quant_conv.bias": checkpoint["post_quant_conv.bias"], |
|
} |
|
) |
|
|
|
|
|
diffusers_checkpoint.update(vqvae_decoder_to_diffusers_checkpoint(model, checkpoint)) |
|
|
|
return diffusers_checkpoint |
|
|
|
|
|
def vqvae_encoder_to_diffusers_checkpoint(model, checkpoint): |
|
diffusers_checkpoint = {} |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
"encoder.conv_in.weight": checkpoint["encoder.conv_in.weight"], |
|
"encoder.conv_in.bias": checkpoint["encoder.conv_in.bias"], |
|
} |
|
) |
|
|
|
|
|
for down_block_idx, down_block in enumerate(model.encoder.down_blocks): |
|
diffusers_down_block_prefix = f"encoder.down_blocks.{down_block_idx}" |
|
down_block_prefix = f"encoder.down.{down_block_idx}" |
|
|
|
|
|
for resnet_idx, resnet in enumerate(down_block.resnets): |
|
diffusers_resnet_prefix = f"{diffusers_down_block_prefix}.resnets.{resnet_idx}" |
|
resnet_prefix = f"{down_block_prefix}.block.{resnet_idx}" |
|
|
|
diffusers_checkpoint.update( |
|
vqvae_resnet_to_diffusers_checkpoint( |
|
resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix |
|
) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
if down_block_idx != len(model.encoder.down_blocks) - 1: |
|
|
|
|
|
diffusers_downsample_prefix = f"{diffusers_down_block_prefix}.downsamplers.0.conv" |
|
downsample_prefix = f"{down_block_prefix}.downsample.conv" |
|
diffusers_checkpoint.update( |
|
{ |
|
f"{diffusers_downsample_prefix}.weight": checkpoint[f"{downsample_prefix}.weight"], |
|
f"{diffusers_downsample_prefix}.bias": checkpoint[f"{downsample_prefix}.bias"], |
|
} |
|
) |
|
|
|
|
|
|
|
if hasattr(down_block, "attentions"): |
|
for attention_idx, _ in enumerate(down_block.attentions): |
|
diffusers_attention_prefix = f"{diffusers_down_block_prefix}.attentions.{attention_idx}" |
|
attention_prefix = f"{down_block_prefix}.attn.{attention_idx}" |
|
diffusers_checkpoint.update( |
|
vqvae_attention_to_diffusers_checkpoint( |
|
checkpoint, |
|
diffusers_attention_prefix=diffusers_attention_prefix, |
|
attention_prefix=attention_prefix, |
|
) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusers_attention_prefix = "encoder.mid_block.attentions.0" |
|
attention_prefix = "encoder.mid.attn_1" |
|
diffusers_checkpoint.update( |
|
vqvae_attention_to_diffusers_checkpoint( |
|
checkpoint, diffusers_attention_prefix=diffusers_attention_prefix, attention_prefix=attention_prefix |
|
) |
|
) |
|
|
|
|
|
|
|
for diffusers_resnet_idx, resnet in enumerate(model.encoder.mid_block.resnets): |
|
diffusers_resnet_prefix = f"encoder.mid_block.resnets.{diffusers_resnet_idx}" |
|
|
|
|
|
orig_resnet_idx = diffusers_resnet_idx + 1 |
|
|
|
resnet_prefix = f"encoder.mid.block_{orig_resnet_idx}" |
|
|
|
diffusers_checkpoint.update( |
|
vqvae_resnet_to_diffusers_checkpoint( |
|
resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix |
|
) |
|
) |
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
|
|
"encoder.conv_norm_out.weight": checkpoint["encoder.norm_out.weight"], |
|
"encoder.conv_norm_out.bias": checkpoint["encoder.norm_out.bias"], |
|
|
|
"encoder.conv_out.weight": checkpoint["encoder.conv_out.weight"], |
|
"encoder.conv_out.bias": checkpoint["encoder.conv_out.bias"], |
|
} |
|
) |
|
|
|
return diffusers_checkpoint |
|
|
|
|
|
def vqvae_decoder_to_diffusers_checkpoint(model, checkpoint): |
|
diffusers_checkpoint = {} |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
"decoder.conv_in.weight": checkpoint["decoder.conv_in.weight"], |
|
"decoder.conv_in.bias": checkpoint["decoder.conv_in.bias"], |
|
} |
|
) |
|
|
|
|
|
|
|
for diffusers_up_block_idx, up_block in enumerate(model.decoder.up_blocks): |
|
|
|
orig_up_block_idx = len(model.decoder.up_blocks) - 1 - diffusers_up_block_idx |
|
|
|
diffusers_up_block_prefix = f"decoder.up_blocks.{diffusers_up_block_idx}" |
|
up_block_prefix = f"decoder.up.{orig_up_block_idx}" |
|
|
|
|
|
for resnet_idx, resnet in enumerate(up_block.resnets): |
|
diffusers_resnet_prefix = f"{diffusers_up_block_prefix}.resnets.{resnet_idx}" |
|
resnet_prefix = f"{up_block_prefix}.block.{resnet_idx}" |
|
|
|
diffusers_checkpoint.update( |
|
vqvae_resnet_to_diffusers_checkpoint( |
|
resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix |
|
) |
|
) |
|
|
|
|
|
|
|
|
|
if diffusers_up_block_idx != len(model.decoder.up_blocks) - 1: |
|
|
|
|
|
diffusers_downsample_prefix = f"{diffusers_up_block_prefix}.upsamplers.0.conv" |
|
downsample_prefix = f"{up_block_prefix}.upsample.conv" |
|
diffusers_checkpoint.update( |
|
{ |
|
f"{diffusers_downsample_prefix}.weight": checkpoint[f"{downsample_prefix}.weight"], |
|
f"{diffusers_downsample_prefix}.bias": checkpoint[f"{downsample_prefix}.bias"], |
|
} |
|
) |
|
|
|
|
|
|
|
if hasattr(up_block, "attentions"): |
|
for attention_idx, _ in enumerate(up_block.attentions): |
|
diffusers_attention_prefix = f"{diffusers_up_block_prefix}.attentions.{attention_idx}" |
|
attention_prefix = f"{up_block_prefix}.attn.{attention_idx}" |
|
diffusers_checkpoint.update( |
|
vqvae_attention_to_diffusers_checkpoint( |
|
checkpoint, |
|
diffusers_attention_prefix=diffusers_attention_prefix, |
|
attention_prefix=attention_prefix, |
|
) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusers_attention_prefix = "decoder.mid_block.attentions.0" |
|
attention_prefix = "decoder.mid.attn_1" |
|
diffusers_checkpoint.update( |
|
vqvae_attention_to_diffusers_checkpoint( |
|
checkpoint, diffusers_attention_prefix=diffusers_attention_prefix, attention_prefix=attention_prefix |
|
) |
|
) |
|
|
|
|
|
|
|
for diffusers_resnet_idx, resnet in enumerate(model.encoder.mid_block.resnets): |
|
diffusers_resnet_prefix = f"decoder.mid_block.resnets.{diffusers_resnet_idx}" |
|
|
|
|
|
orig_resnet_idx = diffusers_resnet_idx + 1 |
|
|
|
resnet_prefix = f"decoder.mid.block_{orig_resnet_idx}" |
|
|
|
diffusers_checkpoint.update( |
|
vqvae_resnet_to_diffusers_checkpoint( |
|
resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix |
|
) |
|
) |
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
|
|
"decoder.conv_norm_out.weight": checkpoint["decoder.norm_out.weight"], |
|
"decoder.conv_norm_out.bias": checkpoint["decoder.norm_out.bias"], |
|
|
|
"decoder.conv_out.weight": checkpoint["decoder.conv_out.weight"], |
|
"decoder.conv_out.bias": checkpoint["decoder.conv_out.bias"], |
|
} |
|
) |
|
|
|
return diffusers_checkpoint |
|
|
|
|
|
def vqvae_resnet_to_diffusers_checkpoint(resnet, checkpoint, *, diffusers_resnet_prefix, resnet_prefix): |
|
rv = { |
|
|
|
f"{diffusers_resnet_prefix}.norm1.weight": checkpoint[f"{resnet_prefix}.norm1.weight"], |
|
f"{diffusers_resnet_prefix}.norm1.bias": checkpoint[f"{resnet_prefix}.norm1.bias"], |
|
|
|
f"{diffusers_resnet_prefix}.conv1.weight": checkpoint[f"{resnet_prefix}.conv1.weight"], |
|
f"{diffusers_resnet_prefix}.conv1.bias": checkpoint[f"{resnet_prefix}.conv1.bias"], |
|
|
|
f"{diffusers_resnet_prefix}.norm2.weight": checkpoint[f"{resnet_prefix}.norm2.weight"], |
|
f"{diffusers_resnet_prefix}.norm2.bias": checkpoint[f"{resnet_prefix}.norm2.bias"], |
|
|
|
f"{diffusers_resnet_prefix}.conv2.weight": checkpoint[f"{resnet_prefix}.conv2.weight"], |
|
f"{diffusers_resnet_prefix}.conv2.bias": checkpoint[f"{resnet_prefix}.conv2.bias"], |
|
} |
|
|
|
if resnet.conv_shortcut is not None: |
|
rv.update( |
|
{ |
|
f"{diffusers_resnet_prefix}.conv_shortcut.weight": checkpoint[f"{resnet_prefix}.nin_shortcut.weight"], |
|
f"{diffusers_resnet_prefix}.conv_shortcut.bias": checkpoint[f"{resnet_prefix}.nin_shortcut.bias"], |
|
} |
|
) |
|
|
|
return rv |
|
|
|
|
|
def vqvae_attention_to_diffusers_checkpoint(checkpoint, *, diffusers_attention_prefix, attention_prefix): |
|
return { |
|
|
|
f"{diffusers_attention_prefix}.group_norm.weight": checkpoint[f"{attention_prefix}.norm.weight"], |
|
f"{diffusers_attention_prefix}.group_norm.bias": checkpoint[f"{attention_prefix}.norm.bias"], |
|
|
|
f"{diffusers_attention_prefix}.query.weight": checkpoint[f"{attention_prefix}.q.weight"][:, :, 0, 0], |
|
f"{diffusers_attention_prefix}.query.bias": checkpoint[f"{attention_prefix}.q.bias"], |
|
|
|
f"{diffusers_attention_prefix}.key.weight": checkpoint[f"{attention_prefix}.k.weight"][:, :, 0, 0], |
|
f"{diffusers_attention_prefix}.key.bias": checkpoint[f"{attention_prefix}.k.bias"], |
|
|
|
f"{diffusers_attention_prefix}.value.weight": checkpoint[f"{attention_prefix}.v.weight"][:, :, 0, 0], |
|
f"{diffusers_attention_prefix}.value.bias": checkpoint[f"{attention_prefix}.v.bias"], |
|
|
|
f"{diffusers_attention_prefix}.proj_attn.weight": checkpoint[f"{attention_prefix}.proj_out.weight"][ |
|
:, :, 0, 0 |
|
], |
|
f"{diffusers_attention_prefix}.proj_attn.bias": checkpoint[f"{attention_prefix}.proj_out.bias"], |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
PORTED_DIFFUSIONS = ["image_synthesis.modeling.transformers.diffusion_transformer.DiffusionTransformer"] |
|
PORTED_TRANSFORMERS = ["image_synthesis.modeling.transformers.transformer_utils.Text2ImageTransformer"] |
|
PORTED_CONTENT_EMBEDDINGS = ["image_synthesis.modeling.embeddings.dalle_mask_image_embedding.DalleMaskImageEmbedding"] |
|
|
|
|
|
def transformer_model_from_original_config( |
|
original_diffusion_config, original_transformer_config, original_content_embedding_config |
|
): |
|
assert ( |
|
original_diffusion_config.target in PORTED_DIFFUSIONS |
|
), f"{original_diffusion_config.target} has not yet been ported to diffusers." |
|
assert ( |
|
original_transformer_config.target in PORTED_TRANSFORMERS |
|
), f"{original_transformer_config.target} has not yet been ported to diffusers." |
|
assert ( |
|
original_content_embedding_config.target in PORTED_CONTENT_EMBEDDINGS |
|
), f"{original_content_embedding_config.target} has not yet been ported to diffusers." |
|
|
|
original_diffusion_config = original_diffusion_config.params |
|
original_transformer_config = original_transformer_config.params |
|
original_content_embedding_config = original_content_embedding_config.params |
|
|
|
inner_dim = original_transformer_config["n_embd"] |
|
|
|
n_heads = original_transformer_config["n_head"] |
|
|
|
|
|
|
|
|
|
|
|
assert inner_dim % n_heads == 0 |
|
d_head = inner_dim // n_heads |
|
|
|
depth = original_transformer_config["n_layer"] |
|
context_dim = original_transformer_config["condition_dim"] |
|
|
|
num_embed = original_content_embedding_config["num_embed"] |
|
|
|
|
|
num_embed = num_embed + 1 |
|
|
|
height = original_transformer_config["content_spatial_size"][0] |
|
width = original_transformer_config["content_spatial_size"][1] |
|
|
|
assert width == height, "width has to be equal to height" |
|
dropout = original_transformer_config["resid_pdrop"] |
|
num_embeds_ada_norm = original_diffusion_config["diffusion_step"] |
|
|
|
model_kwargs = { |
|
"attention_bias": True, |
|
"cross_attention_dim": context_dim, |
|
"attention_head_dim": d_head, |
|
"num_layers": depth, |
|
"dropout": dropout, |
|
"num_attention_heads": n_heads, |
|
"num_vector_embeds": num_embed, |
|
"num_embeds_ada_norm": num_embeds_ada_norm, |
|
"norm_num_groups": 32, |
|
"sample_size": width, |
|
"activation_fn": "geglu-approximate", |
|
} |
|
|
|
model = Transformer2DModel(**model_kwargs) |
|
return model |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def transformer_original_checkpoint_to_diffusers_checkpoint(model, checkpoint): |
|
diffusers_checkpoint = {} |
|
|
|
transformer_prefix = "transformer.transformer" |
|
|
|
diffusers_latent_image_embedding_prefix = "latent_image_embedding" |
|
latent_image_embedding_prefix = f"{transformer_prefix}.content_emb" |
|
|
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
f"{diffusers_latent_image_embedding_prefix}.emb.weight": checkpoint[ |
|
f"{latent_image_embedding_prefix}.emb.weight" |
|
], |
|
f"{diffusers_latent_image_embedding_prefix}.height_emb.weight": checkpoint[ |
|
f"{latent_image_embedding_prefix}.height_emb.weight" |
|
], |
|
f"{diffusers_latent_image_embedding_prefix}.width_emb.weight": checkpoint[ |
|
f"{latent_image_embedding_prefix}.width_emb.weight" |
|
], |
|
} |
|
) |
|
|
|
|
|
for transformer_block_idx, transformer_block in enumerate(model.transformer_blocks): |
|
diffusers_transformer_block_prefix = f"transformer_blocks.{transformer_block_idx}" |
|
transformer_block_prefix = f"{transformer_prefix}.blocks.{transformer_block_idx}" |
|
|
|
|
|
diffusers_ada_norm_prefix = f"{diffusers_transformer_block_prefix}.norm1" |
|
ada_norm_prefix = f"{transformer_block_prefix}.ln1" |
|
|
|
diffusers_checkpoint.update( |
|
transformer_ada_norm_to_diffusers_checkpoint( |
|
checkpoint, diffusers_ada_norm_prefix=diffusers_ada_norm_prefix, ada_norm_prefix=ada_norm_prefix |
|
) |
|
) |
|
|
|
|
|
diffusers_attention_prefix = f"{diffusers_transformer_block_prefix}.attn1" |
|
attention_prefix = f"{transformer_block_prefix}.attn1" |
|
|
|
diffusers_checkpoint.update( |
|
transformer_attention_to_diffusers_checkpoint( |
|
checkpoint, diffusers_attention_prefix=diffusers_attention_prefix, attention_prefix=attention_prefix |
|
) |
|
) |
|
|
|
|
|
diffusers_ada_norm_prefix = f"{diffusers_transformer_block_prefix}.norm2" |
|
ada_norm_prefix = f"{transformer_block_prefix}.ln1_1" |
|
|
|
diffusers_checkpoint.update( |
|
transformer_ada_norm_to_diffusers_checkpoint( |
|
checkpoint, diffusers_ada_norm_prefix=diffusers_ada_norm_prefix, ada_norm_prefix=ada_norm_prefix |
|
) |
|
) |
|
|
|
|
|
diffusers_attention_prefix = f"{diffusers_transformer_block_prefix}.attn2" |
|
attention_prefix = f"{transformer_block_prefix}.attn2" |
|
|
|
diffusers_checkpoint.update( |
|
transformer_attention_to_diffusers_checkpoint( |
|
checkpoint, diffusers_attention_prefix=diffusers_attention_prefix, attention_prefix=attention_prefix |
|
) |
|
) |
|
|
|
|
|
diffusers_norm_block_prefix = f"{diffusers_transformer_block_prefix}.norm3" |
|
norm_block_prefix = f"{transformer_block_prefix}.ln2" |
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
f"{diffusers_norm_block_prefix}.weight": checkpoint[f"{norm_block_prefix}.weight"], |
|
f"{diffusers_norm_block_prefix}.bias": checkpoint[f"{norm_block_prefix}.bias"], |
|
} |
|
) |
|
|
|
|
|
diffusers_feedforward_prefix = f"{diffusers_transformer_block_prefix}.ff" |
|
feedforward_prefix = f"{transformer_block_prefix}.mlp" |
|
|
|
diffusers_checkpoint.update( |
|
transformer_feedforward_to_diffusers_checkpoint( |
|
checkpoint, |
|
diffusers_feedforward_prefix=diffusers_feedforward_prefix, |
|
feedforward_prefix=feedforward_prefix, |
|
) |
|
) |
|
|
|
|
|
|
|
diffusers_norm_out_prefix = "norm_out" |
|
norm_out_prefix = f"{transformer_prefix}.to_logits.0" |
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
f"{diffusers_norm_out_prefix}.weight": checkpoint[f"{norm_out_prefix}.weight"], |
|
f"{diffusers_norm_out_prefix}.bias": checkpoint[f"{norm_out_prefix}.bias"], |
|
} |
|
) |
|
|
|
diffusers_out_prefix = "out" |
|
out_prefix = f"{transformer_prefix}.to_logits.1" |
|
|
|
diffusers_checkpoint.update( |
|
{ |
|
f"{diffusers_out_prefix}.weight": checkpoint[f"{out_prefix}.weight"], |
|
f"{diffusers_out_prefix}.bias": checkpoint[f"{out_prefix}.bias"], |
|
} |
|
) |
|
|
|
return diffusers_checkpoint |
|
|
|
|
|
def transformer_ada_norm_to_diffusers_checkpoint(checkpoint, *, diffusers_ada_norm_prefix, ada_norm_prefix): |
|
return { |
|
f"{diffusers_ada_norm_prefix}.emb.weight": checkpoint[f"{ada_norm_prefix}.emb.weight"], |
|
f"{diffusers_ada_norm_prefix}.linear.weight": checkpoint[f"{ada_norm_prefix}.linear.weight"], |
|
f"{diffusers_ada_norm_prefix}.linear.bias": checkpoint[f"{ada_norm_prefix}.linear.bias"], |
|
} |
|
|
|
|
|
def transformer_attention_to_diffusers_checkpoint(checkpoint, *, diffusers_attention_prefix, attention_prefix): |
|
return { |
|
|
|
f"{diffusers_attention_prefix}.to_k.weight": checkpoint[f"{attention_prefix}.key.weight"], |
|
f"{diffusers_attention_prefix}.to_k.bias": checkpoint[f"{attention_prefix}.key.bias"], |
|
|
|
f"{diffusers_attention_prefix}.to_q.weight": checkpoint[f"{attention_prefix}.query.weight"], |
|
f"{diffusers_attention_prefix}.to_q.bias": checkpoint[f"{attention_prefix}.query.bias"], |
|
|
|
f"{diffusers_attention_prefix}.to_v.weight": checkpoint[f"{attention_prefix}.value.weight"], |
|
f"{diffusers_attention_prefix}.to_v.bias": checkpoint[f"{attention_prefix}.value.bias"], |
|
|
|
f"{diffusers_attention_prefix}.to_out.0.weight": checkpoint[f"{attention_prefix}.proj.weight"], |
|
f"{diffusers_attention_prefix}.to_out.0.bias": checkpoint[f"{attention_prefix}.proj.bias"], |
|
} |
|
|
|
|
|
def transformer_feedforward_to_diffusers_checkpoint(checkpoint, *, diffusers_feedforward_prefix, feedforward_prefix): |
|
return { |
|
f"{diffusers_feedforward_prefix}.net.0.proj.weight": checkpoint[f"{feedforward_prefix}.0.weight"], |
|
f"{diffusers_feedforward_prefix}.net.0.proj.bias": checkpoint[f"{feedforward_prefix}.0.bias"], |
|
f"{diffusers_feedforward_prefix}.net.2.weight": checkpoint[f"{feedforward_prefix}.2.weight"], |
|
f"{diffusers_feedforward_prefix}.net.2.bias": checkpoint[f"{feedforward_prefix}.2.bias"], |
|
} |
|
|
|
|
|
|
|
|
|
|
|
def read_config_file(filename): |
|
|
|
|
|
|
|
|
|
with open(filename) as f: |
|
original_config = yaml.load(f, FullLoader) |
|
|
|
return OmegaConf.create(original_config) |
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--vqvae_checkpoint_path", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="Path to the vqvae checkpoint to convert.", |
|
) |
|
|
|
parser.add_argument( |
|
"--vqvae_original_config_file", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="The YAML config file corresponding to the original architecture for the vqvae.", |
|
) |
|
|
|
parser.add_argument( |
|
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." |
|
) |
|
|
|
parser.add_argument( |
|
"--original_config_file", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="The YAML config file corresponding to the original architecture.", |
|
) |
|
|
|
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") |
|
|
|
parser.add_argument( |
|
"--checkpoint_load_device", |
|
default="cpu", |
|
type=str, |
|
required=False, |
|
help="The device passed to `map_location` when loading checkpoints.", |
|
) |
|
|
|
|
|
|
|
parser.add_argument( |
|
"--no_use_ema", |
|
action="store_true", |
|
required=False, |
|
help=( |
|
"Set to not use the ema weights from the original VQ-Diffusion checkpoint. You probably do not want to set" |
|
" it as the original VQ-Diffusion always uses the ema weights when loading models." |
|
), |
|
) |
|
|
|
args = parser.parse_args() |
|
|
|
use_ema = not args.no_use_ema |
|
|
|
print(f"loading checkpoints to {args.checkpoint_load_device}") |
|
|
|
checkpoint_map_location = torch.device(args.checkpoint_load_device) |
|
|
|
|
|
|
|
print(f"loading vqvae, config: {args.vqvae_original_config_file}, checkpoint: {args.vqvae_checkpoint_path}") |
|
|
|
vqvae_original_config = read_config_file(args.vqvae_original_config_file).model |
|
vqvae_checkpoint = torch.load(args.vqvae_checkpoint_path, map_location=checkpoint_map_location)["model"] |
|
|
|
with init_empty_weights(): |
|
vqvae_model = vqvae_model_from_original_config(vqvae_original_config) |
|
|
|
vqvae_diffusers_checkpoint = vqvae_original_checkpoint_to_diffusers_checkpoint(vqvae_model, vqvae_checkpoint) |
|
|
|
with tempfile.NamedTemporaryFile() as vqvae_diffusers_checkpoint_file: |
|
torch.save(vqvae_diffusers_checkpoint, vqvae_diffusers_checkpoint_file.name) |
|
del vqvae_diffusers_checkpoint |
|
del vqvae_checkpoint |
|
load_checkpoint_and_dispatch(vqvae_model, vqvae_diffusers_checkpoint_file.name, device_map="auto") |
|
|
|
print("done loading vqvae") |
|
|
|
|
|
|
|
|
|
|
|
print( |
|
f"loading transformer, config: {args.original_config_file}, checkpoint: {args.checkpoint_path}, use ema:" |
|
f" {use_ema}" |
|
) |
|
|
|
original_config = read_config_file(args.original_config_file).model |
|
|
|
diffusion_config = original_config.params.diffusion_config |
|
transformer_config = original_config.params.diffusion_config.params.transformer_config |
|
content_embedding_config = original_config.params.diffusion_config.params.content_emb_config |
|
|
|
pre_checkpoint = torch.load(args.checkpoint_path, map_location=checkpoint_map_location) |
|
|
|
if use_ema: |
|
if "ema" in pre_checkpoint: |
|
checkpoint = {} |
|
for k, v in pre_checkpoint["model"].items(): |
|
checkpoint[k] = v |
|
|
|
for k, v in pre_checkpoint["ema"].items(): |
|
|
|
|
|
|
|
checkpoint[f"transformer.{k}"] = v |
|
else: |
|
print("attempted to load ema weights but no ema weights are specified in the loaded checkpoint.") |
|
checkpoint = pre_checkpoint["model"] |
|
else: |
|
checkpoint = pre_checkpoint["model"] |
|
|
|
del pre_checkpoint |
|
|
|
with init_empty_weights(): |
|
transformer_model = transformer_model_from_original_config( |
|
diffusion_config, transformer_config, content_embedding_config |
|
) |
|
|
|
diffusers_transformer_checkpoint = transformer_original_checkpoint_to_diffusers_checkpoint( |
|
transformer_model, checkpoint |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
learnable_classifier_free_sampling_embeddings = diffusion_config.params.learnable_cf |
|
|
|
if learnable_classifier_free_sampling_embeddings: |
|
learned_classifier_free_sampling_embeddings_embeddings = checkpoint["transformer.empty_text_embed"] |
|
else: |
|
learned_classifier_free_sampling_embeddings_embeddings = None |
|
|
|
|
|
|
|
with tempfile.NamedTemporaryFile() as diffusers_transformer_checkpoint_file: |
|
torch.save(diffusers_transformer_checkpoint, diffusers_transformer_checkpoint_file.name) |
|
del diffusers_transformer_checkpoint |
|
del checkpoint |
|
load_checkpoint_and_dispatch(transformer_model, diffusers_transformer_checkpoint_file.name, device_map="auto") |
|
|
|
print("done loading transformer") |
|
|
|
|
|
|
|
|
|
|
|
print("loading CLIP text encoder") |
|
|
|
clip_name = "openai/clip-vit-base-patch32" |
|
|
|
|
|
|
|
|
|
|
|
pad_token = "!" |
|
|
|
tokenizer_model = CLIPTokenizer.from_pretrained(clip_name, pad_token=pad_token, device_map="auto") |
|
|
|
assert tokenizer_model.convert_tokens_to_ids(pad_token) == 0 |
|
|
|
text_encoder_model = CLIPTextModel.from_pretrained( |
|
clip_name, |
|
|
|
|
|
) |
|
|
|
print("done loading CLIP text encoder") |
|
|
|
|
|
|
|
|
|
|
|
scheduler_model = VQDiffusionScheduler( |
|
|
|
num_vec_classes=transformer_model.num_vector_embeds |
|
) |
|
|
|
|
|
|
|
|
|
|
|
with init_empty_weights(): |
|
learned_classifier_free_sampling_embeddings_model = LearnedClassifierFreeSamplingEmbeddings( |
|
learnable_classifier_free_sampling_embeddings, |
|
hidden_size=text_encoder_model.config.hidden_size, |
|
length=tokenizer_model.model_max_length, |
|
) |
|
|
|
learned_classifier_free_sampling_checkpoint = { |
|
"embeddings": learned_classifier_free_sampling_embeddings_embeddings.float() |
|
} |
|
|
|
with tempfile.NamedTemporaryFile() as learned_classifier_free_sampling_checkpoint_file: |
|
torch.save(learned_classifier_free_sampling_checkpoint, learned_classifier_free_sampling_checkpoint_file.name) |
|
del learned_classifier_free_sampling_checkpoint |
|
del learned_classifier_free_sampling_embeddings_embeddings |
|
load_checkpoint_and_dispatch( |
|
learned_classifier_free_sampling_embeddings_model, |
|
learned_classifier_free_sampling_checkpoint_file.name, |
|
device_map="auto", |
|
) |
|
|
|
|
|
|
|
print(f"saving VQ diffusion model, path: {args.dump_path}") |
|
|
|
pipe = VQDiffusionPipeline( |
|
vqvae=vqvae_model, |
|
transformer=transformer_model, |
|
tokenizer=tokenizer_model, |
|
text_encoder=text_encoder_model, |
|
learned_classifier_free_sampling_embeddings=learned_classifier_free_sampling_embeddings_model, |
|
scheduler=scheduler_model, |
|
) |
|
pipe.save_pretrained(args.dump_path) |
|
|
|
print("done writing VQ diffusion model") |
|
|