|
""" |
|
This script modified from |
|
https://github.com/huggingface/diffusers/blob/bc691231360a4cbc7d19a58742ebb8ed0f05e027/scripts/convert_original_stable_diffusion_to_diffusers.py |
|
|
|
Convert original Zero1to3 checkpoint to diffusers checkpoint. |
|
|
|
# run the convert script |
|
$ python convert_zero123_to_diffusers.py \ |
|
--checkpoint_path /path/zero123/105000.ckpt \ |
|
--dump_path ./zero1to3 \ |
|
--original_config_file /path/zero123/configs/sd-objaverse-finetune-c_concat-256.yaml |
|
``` |
|
""" |
|
import argparse |
|
|
|
import torch |
|
from accelerate import init_empty_weights |
|
from accelerate.utils import set_module_tensor_to_device |
|
from pipeline_zero1to3 import CCProjection, Zero1to3StableDiffusionPipeline |
|
from transformers import ( |
|
CLIPImageProcessor, |
|
CLIPVisionModelWithProjection, |
|
) |
|
|
|
from diffusers.models import ( |
|
AutoencoderKL, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.schedulers import DDIMScheduler |
|
from diffusers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def create_unet_diffusers_config(original_config, image_size: int, controlnet=False): |
|
""" |
|
Creates a config for the diffusers based on the config of the LDM model. |
|
""" |
|
if controlnet: |
|
unet_params = original_config.model.params.control_stage_config.params |
|
else: |
|
if "unet_config" in original_config.model.params and original_config.model.params.unet_config is not None: |
|
unet_params = original_config.model.params.unet_config.params |
|
else: |
|
unet_params = original_config.model.params.network_config.params |
|
|
|
vae_params = original_config.model.params.first_stage_config.params.ddconfig |
|
|
|
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult] |
|
|
|
down_block_types = [] |
|
resolution = 1 |
|
for i in range(len(block_out_channels)): |
|
block_type = "CrossAttnDownBlock2D" if resolution in unet_params.attention_resolutions else "DownBlock2D" |
|
down_block_types.append(block_type) |
|
if i != len(block_out_channels) - 1: |
|
resolution *= 2 |
|
|
|
up_block_types = [] |
|
for i in range(len(block_out_channels)): |
|
block_type = "CrossAttnUpBlock2D" if resolution in unet_params.attention_resolutions else "UpBlock2D" |
|
up_block_types.append(block_type) |
|
resolution //= 2 |
|
|
|
if unet_params.transformer_depth is not None: |
|
transformer_layers_per_block = ( |
|
unet_params.transformer_depth |
|
if isinstance(unet_params.transformer_depth, int) |
|
else list(unet_params.transformer_depth) |
|
) |
|
else: |
|
transformer_layers_per_block = 1 |
|
|
|
vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1) |
|
|
|
head_dim = unet_params.num_heads if "num_heads" in unet_params else None |
|
use_linear_projection = ( |
|
unet_params.use_linear_in_transformer if "use_linear_in_transformer" in unet_params else False |
|
) |
|
if use_linear_projection: |
|
|
|
if head_dim is None: |
|
head_dim_mult = unet_params.model_channels // unet_params.num_head_channels |
|
head_dim = [head_dim_mult * c for c in list(unet_params.channel_mult)] |
|
|
|
class_embed_type = None |
|
addition_embed_type = None |
|
addition_time_embed_dim = None |
|
projection_class_embeddings_input_dim = None |
|
context_dim = None |
|
|
|
if unet_params.context_dim is not None: |
|
context_dim = ( |
|
unet_params.context_dim if isinstance(unet_params.context_dim, int) else unet_params.context_dim[0] |
|
) |
|
|
|
if "num_classes" in unet_params: |
|
if unet_params.num_classes == "sequential": |
|
if context_dim in [2048, 1280]: |
|
|
|
addition_embed_type = "text_time" |
|
addition_time_embed_dim = 256 |
|
else: |
|
class_embed_type = "projection" |
|
assert "adm_in_channels" in unet_params |
|
projection_class_embeddings_input_dim = unet_params.adm_in_channels |
|
else: |
|
raise NotImplementedError(f"Unknown conditional unet num_classes config: {unet_params.num_classes}") |
|
|
|
config = { |
|
"sample_size": image_size // vae_scale_factor, |
|
"in_channels": unet_params.in_channels, |
|
"down_block_types": tuple(down_block_types), |
|
"block_out_channels": tuple(block_out_channels), |
|
"layers_per_block": unet_params.num_res_blocks, |
|
"cross_attention_dim": context_dim, |
|
"attention_head_dim": head_dim, |
|
"use_linear_projection": use_linear_projection, |
|
"class_embed_type": class_embed_type, |
|
"addition_embed_type": addition_embed_type, |
|
"addition_time_embed_dim": addition_time_embed_dim, |
|
"projection_class_embeddings_input_dim": projection_class_embeddings_input_dim, |
|
"transformer_layers_per_block": transformer_layers_per_block, |
|
} |
|
|
|
if controlnet: |
|
config["conditioning_channels"] = unet_params.hint_channels |
|
else: |
|
config["out_channels"] = unet_params.out_channels |
|
config["up_block_types"] = tuple(up_block_types) |
|
|
|
return config |
|
|
|
|
|
def assign_to_checkpoint( |
|
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None |
|
): |
|
""" |
|
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits |
|
attention layers, and takes into account additional replacements that may arise. |
|
|
|
Assigns the weights to the new checkpoint. |
|
""" |
|
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." |
|
|
|
|
|
if attention_paths_to_split is not None: |
|
for path, path_map in attention_paths_to_split.items(): |
|
old_tensor = old_checkpoint[path] |
|
channels = old_tensor.shape[0] // 3 |
|
|
|
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) |
|
|
|
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 |
|
|
|
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) |
|
query, key, value = old_tensor.split(channels // num_heads, dim=1) |
|
|
|
checkpoint[path_map["query"]] = query.reshape(target_shape) |
|
checkpoint[path_map["key"]] = key.reshape(target_shape) |
|
checkpoint[path_map["value"]] = value.reshape(target_shape) |
|
|
|
for path in paths: |
|
new_path = path["new"] |
|
|
|
|
|
if attention_paths_to_split is not None and new_path in attention_paths_to_split: |
|
continue |
|
|
|
|
|
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") |
|
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") |
|
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") |
|
|
|
if additional_replacements is not None: |
|
for replacement in additional_replacements: |
|
new_path = new_path.replace(replacement["old"], replacement["new"]) |
|
|
|
|
|
is_attn_weight = "proj_attn.weight" in new_path or ("attentions" in new_path and "to_" in new_path) |
|
shape = old_checkpoint[path["old"]].shape |
|
if is_attn_weight and len(shape) == 3: |
|
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0] |
|
elif is_attn_weight and len(shape) == 4: |
|
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0, 0] |
|
else: |
|
checkpoint[new_path] = old_checkpoint[path["old"]] |
|
|
|
|
|
def shave_segments(path, n_shave_prefix_segments=1): |
|
""" |
|
Removes segments. Positive values shave the first segments, negative shave the last segments. |
|
""" |
|
if n_shave_prefix_segments >= 0: |
|
return ".".join(path.split(".")[n_shave_prefix_segments:]) |
|
else: |
|
return ".".join(path.split(".")[:n_shave_prefix_segments]) |
|
|
|
|
|
def renew_resnet_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside resnets to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item.replace("in_layers.0", "norm1") |
|
new_item = new_item.replace("in_layers.2", "conv1") |
|
|
|
new_item = new_item.replace("out_layers.0", "norm2") |
|
new_item = new_item.replace("out_layers.3", "conv2") |
|
|
|
new_item = new_item.replace("emb_layers.1", "time_emb_proj") |
|
new_item = new_item.replace("skip_connection", "conv_shortcut") |
|
|
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) |
|
|
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
def renew_attention_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside attentions to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
def convert_ldm_unet_checkpoint( |
|
checkpoint, config, path=None, extract_ema=False, controlnet=False, skip_extract_state_dict=False |
|
): |
|
""" |
|
Takes a state dict and a config, and returns a converted checkpoint. |
|
""" |
|
|
|
if skip_extract_state_dict: |
|
unet_state_dict = checkpoint |
|
else: |
|
|
|
unet_state_dict = {} |
|
keys = list(checkpoint.keys()) |
|
|
|
if controlnet: |
|
unet_key = "control_model." |
|
else: |
|
unet_key = "model.diffusion_model." |
|
|
|
|
|
if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema: |
|
logger.warning(f"Checkpoint {path} has both EMA and non-EMA weights.") |
|
logger.warning( |
|
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA" |
|
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag." |
|
) |
|
for key in keys: |
|
if key.startswith("model.diffusion_model"): |
|
flat_ema_key = "model_ema." + "".join(key.split(".")[1:]) |
|
unet_state_dict[key.replace(unet_key, "")] = checkpoint[flat_ema_key] |
|
else: |
|
if sum(k.startswith("model_ema") for k in keys) > 100: |
|
logger.warning( |
|
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA" |
|
" weights (usually better for inference), please make sure to add the `--extract_ema` flag." |
|
) |
|
|
|
for key in keys: |
|
if key.startswith(unet_key): |
|
unet_state_dict[key.replace(unet_key, "")] = checkpoint[key] |
|
|
|
new_checkpoint = {} |
|
|
|
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"] |
|
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"] |
|
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"] |
|
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"] |
|
|
|
if config["class_embed_type"] is None: |
|
|
|
... |
|
elif config["class_embed_type"] == "timestep" or config["class_embed_type"] == "projection": |
|
new_checkpoint["class_embedding.linear_1.weight"] = unet_state_dict["label_emb.0.0.weight"] |
|
new_checkpoint["class_embedding.linear_1.bias"] = unet_state_dict["label_emb.0.0.bias"] |
|
new_checkpoint["class_embedding.linear_2.weight"] = unet_state_dict["label_emb.0.2.weight"] |
|
new_checkpoint["class_embedding.linear_2.bias"] = unet_state_dict["label_emb.0.2.bias"] |
|
else: |
|
raise NotImplementedError(f"Not implemented `class_embed_type`: {config['class_embed_type']}") |
|
|
|
if config["addition_embed_type"] == "text_time": |
|
new_checkpoint["add_embedding.linear_1.weight"] = unet_state_dict["label_emb.0.0.weight"] |
|
new_checkpoint["add_embedding.linear_1.bias"] = unet_state_dict["label_emb.0.0.bias"] |
|
new_checkpoint["add_embedding.linear_2.weight"] = unet_state_dict["label_emb.0.2.weight"] |
|
new_checkpoint["add_embedding.linear_2.bias"] = unet_state_dict["label_emb.0.2.bias"] |
|
|
|
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"] |
|
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"] |
|
|
|
if not controlnet: |
|
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"] |
|
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"] |
|
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"] |
|
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"] |
|
|
|
|
|
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer}) |
|
input_blocks = { |
|
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key] |
|
for layer_id in range(num_input_blocks) |
|
} |
|
|
|
|
|
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer}) |
|
middle_blocks = { |
|
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key] |
|
for layer_id in range(num_middle_blocks) |
|
} |
|
|
|
|
|
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer}) |
|
output_blocks = { |
|
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key] |
|
for layer_id in range(num_output_blocks) |
|
} |
|
|
|
for i in range(1, num_input_blocks): |
|
block_id = (i - 1) // (config["layers_per_block"] + 1) |
|
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) |
|
|
|
resnets = [ |
|
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key |
|
] |
|
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] |
|
|
|
if f"input_blocks.{i}.0.op.weight" in unet_state_dict: |
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop( |
|
f"input_blocks.{i}.0.op.weight" |
|
) |
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop( |
|
f"input_blocks.{i}.0.op.bias" |
|
) |
|
|
|
paths = renew_resnet_paths(resnets) |
|
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} |
|
assign_to_checkpoint( |
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
|
|
if len(attentions): |
|
paths = renew_attention_paths(attentions) |
|
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"} |
|
assign_to_checkpoint( |
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
|
|
resnet_0 = middle_blocks[0] |
|
attentions = middle_blocks[1] |
|
resnet_1 = middle_blocks[2] |
|
|
|
resnet_0_paths = renew_resnet_paths(resnet_0) |
|
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config) |
|
|
|
resnet_1_paths = renew_resnet_paths(resnet_1) |
|
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config) |
|
|
|
attentions_paths = renew_attention_paths(attentions) |
|
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"} |
|
assign_to_checkpoint( |
|
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
|
|
for i in range(num_output_blocks): |
|
block_id = i // (config["layers_per_block"] + 1) |
|
layer_in_block_id = i % (config["layers_per_block"] + 1) |
|
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]] |
|
output_block_list = {} |
|
|
|
for layer in output_block_layers: |
|
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1) |
|
if layer_id in output_block_list: |
|
output_block_list[layer_id].append(layer_name) |
|
else: |
|
output_block_list[layer_id] = [layer_name] |
|
|
|
if len(output_block_list) > 1: |
|
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] |
|
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] |
|
|
|
resnet_0_paths = renew_resnet_paths(resnets) |
|
paths = renew_resnet_paths(resnets) |
|
|
|
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} |
|
assign_to_checkpoint( |
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
|
|
output_block_list = {k: sorted(v) for k, v in output_block_list.items()} |
|
if ["conv.bias", "conv.weight"] in output_block_list.values(): |
|
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"]) |
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ |
|
f"output_blocks.{i}.{index}.conv.weight" |
|
] |
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ |
|
f"output_blocks.{i}.{index}.conv.bias" |
|
] |
|
|
|
|
|
if len(attentions) == 2: |
|
attentions = [] |
|
|
|
if len(attentions): |
|
paths = renew_attention_paths(attentions) |
|
meta_path = { |
|
"old": f"output_blocks.{i}.1", |
|
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", |
|
} |
|
assign_to_checkpoint( |
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
else: |
|
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1) |
|
for path in resnet_0_paths: |
|
old_path = ".".join(["output_blocks", str(i), path["old"]]) |
|
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]]) |
|
|
|
new_checkpoint[new_path] = unet_state_dict[old_path] |
|
|
|
if controlnet: |
|
|
|
|
|
orig_index = 0 |
|
|
|
new_checkpoint["controlnet_cond_embedding.conv_in.weight"] = unet_state_dict.pop( |
|
f"input_hint_block.{orig_index}.weight" |
|
) |
|
new_checkpoint["controlnet_cond_embedding.conv_in.bias"] = unet_state_dict.pop( |
|
f"input_hint_block.{orig_index}.bias" |
|
) |
|
|
|
orig_index += 2 |
|
|
|
diffusers_index = 0 |
|
|
|
while diffusers_index < 6: |
|
new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_index}.weight"] = unet_state_dict.pop( |
|
f"input_hint_block.{orig_index}.weight" |
|
) |
|
new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_index}.bias"] = unet_state_dict.pop( |
|
f"input_hint_block.{orig_index}.bias" |
|
) |
|
diffusers_index += 1 |
|
orig_index += 2 |
|
|
|
new_checkpoint["controlnet_cond_embedding.conv_out.weight"] = unet_state_dict.pop( |
|
f"input_hint_block.{orig_index}.weight" |
|
) |
|
new_checkpoint["controlnet_cond_embedding.conv_out.bias"] = unet_state_dict.pop( |
|
f"input_hint_block.{orig_index}.bias" |
|
) |
|
|
|
|
|
for i in range(num_input_blocks): |
|
new_checkpoint[f"controlnet_down_blocks.{i}.weight"] = unet_state_dict.pop(f"zero_convs.{i}.0.weight") |
|
new_checkpoint[f"controlnet_down_blocks.{i}.bias"] = unet_state_dict.pop(f"zero_convs.{i}.0.bias") |
|
|
|
|
|
new_checkpoint["controlnet_mid_block.weight"] = unet_state_dict.pop("middle_block_out.0.weight") |
|
new_checkpoint["controlnet_mid_block.bias"] = unet_state_dict.pop("middle_block_out.0.bias") |
|
|
|
return new_checkpoint |
|
|
|
|
|
def create_vae_diffusers_config(original_config, image_size: int): |
|
""" |
|
Creates a config for the diffusers based on the config of the LDM model. |
|
""" |
|
vae_params = original_config.model.params.first_stage_config.params.ddconfig |
|
_ = original_config.model.params.first_stage_config.params.embed_dim |
|
|
|
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult] |
|
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) |
|
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) |
|
|
|
config = { |
|
"sample_size": image_size, |
|
"in_channels": vae_params.in_channels, |
|
"out_channels": vae_params.out_ch, |
|
"down_block_types": tuple(down_block_types), |
|
"up_block_types": tuple(up_block_types), |
|
"block_out_channels": tuple(block_out_channels), |
|
"latent_channels": vae_params.z_channels, |
|
"layers_per_block": vae_params.num_res_blocks, |
|
} |
|
return config |
|
|
|
|
|
def convert_ldm_vae_checkpoint(checkpoint, config): |
|
|
|
vae_state_dict = {} |
|
vae_key = "first_stage_model." |
|
keys = list(checkpoint.keys()) |
|
for key in keys: |
|
if key.startswith(vae_key): |
|
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key) |
|
|
|
new_checkpoint = {} |
|
|
|
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] |
|
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] |
|
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"] |
|
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] |
|
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"] |
|
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"] |
|
|
|
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] |
|
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] |
|
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"] |
|
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] |
|
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"] |
|
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"] |
|
|
|
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] |
|
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] |
|
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] |
|
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] |
|
|
|
|
|
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer}) |
|
down_blocks = { |
|
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) |
|
} |
|
|
|
|
|
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer}) |
|
up_blocks = { |
|
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks) |
|
} |
|
|
|
for i in range(num_down_blocks): |
|
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] |
|
|
|
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: |
|
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop( |
|
f"encoder.down.{i}.downsample.conv.weight" |
|
) |
|
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop( |
|
f"encoder.down.{i}.downsample.conv.bias" |
|
) |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
|
|
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] |
|
num_mid_res_blocks = 2 |
|
for i in range(1, num_mid_res_blocks + 1): |
|
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
|
|
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] |
|
paths = renew_vae_attention_paths(mid_attentions) |
|
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
conv_attn_to_linear(new_checkpoint) |
|
|
|
for i in range(num_up_blocks): |
|
block_id = num_up_blocks - 1 - i |
|
resnets = [ |
|
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key |
|
] |
|
|
|
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: |
|
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[ |
|
f"decoder.up.{block_id}.upsample.conv.weight" |
|
] |
|
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[ |
|
f"decoder.up.{block_id}.upsample.conv.bias" |
|
] |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
|
|
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] |
|
num_mid_res_blocks = 2 |
|
for i in range(1, num_mid_res_blocks + 1): |
|
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
|
|
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] |
|
paths = renew_vae_attention_paths(mid_attentions) |
|
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
conv_attn_to_linear(new_checkpoint) |
|
return new_checkpoint |
|
|
|
|
|
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside resnets to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item |
|
|
|
new_item = new_item.replace("nin_shortcut", "conv_shortcut") |
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) |
|
|
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside attentions to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item |
|
|
|
new_item = new_item.replace("norm.weight", "group_norm.weight") |
|
new_item = new_item.replace("norm.bias", "group_norm.bias") |
|
|
|
new_item = new_item.replace("q.weight", "to_q.weight") |
|
new_item = new_item.replace("q.bias", "to_q.bias") |
|
|
|
new_item = new_item.replace("k.weight", "to_k.weight") |
|
new_item = new_item.replace("k.bias", "to_k.bias") |
|
|
|
new_item = new_item.replace("v.weight", "to_v.weight") |
|
new_item = new_item.replace("v.bias", "to_v.bias") |
|
|
|
new_item = new_item.replace("proj_out.weight", "to_out.0.weight") |
|
new_item = new_item.replace("proj_out.bias", "to_out.0.bias") |
|
|
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) |
|
|
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
def conv_attn_to_linear(checkpoint): |
|
keys = list(checkpoint.keys()) |
|
attn_keys = ["query.weight", "key.weight", "value.weight"] |
|
for key in keys: |
|
if ".".join(key.split(".")[-2:]) in attn_keys: |
|
if checkpoint[key].ndim > 2: |
|
checkpoint[key] = checkpoint[key][:, :, 0, 0] |
|
elif "proj_attn.weight" in key: |
|
if checkpoint[key].ndim > 2: |
|
checkpoint[key] = checkpoint[key][:, :, 0] |
|
|
|
|
|
def convert_from_original_zero123_ckpt(checkpoint_path, original_config_file, extract_ema, device): |
|
ckpt = torch.load(checkpoint_path, map_location=device) |
|
ckpt["global_step"] |
|
checkpoint = ckpt["state_dict"] |
|
del ckpt |
|
torch.cuda.empty_cache() |
|
|
|
from omegaconf import OmegaConf |
|
|
|
original_config = OmegaConf.load(original_config_file) |
|
original_config.model.params.cond_stage_config.target.split(".")[-1] |
|
num_in_channels = 8 |
|
original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = num_in_channels |
|
prediction_type = "epsilon" |
|
image_size = 256 |
|
num_train_timesteps = getattr(original_config.model.params, "timesteps", None) or 1000 |
|
|
|
beta_start = getattr(original_config.model.params, "linear_start", None) or 0.02 |
|
beta_end = getattr(original_config.model.params, "linear_end", None) or 0.085 |
|
scheduler = DDIMScheduler( |
|
beta_end=beta_end, |
|
beta_schedule="scaled_linear", |
|
beta_start=beta_start, |
|
num_train_timesteps=num_train_timesteps, |
|
steps_offset=1, |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
prediction_type=prediction_type, |
|
) |
|
scheduler.register_to_config(clip_sample=False) |
|
|
|
|
|
upcast_attention = None |
|
unet_config = create_unet_diffusers_config(original_config, image_size=image_size) |
|
unet_config["upcast_attention"] = upcast_attention |
|
with init_empty_weights(): |
|
unet = UNet2DConditionModel(**unet_config) |
|
converted_unet_checkpoint = convert_ldm_unet_checkpoint( |
|
checkpoint, unet_config, path=None, extract_ema=extract_ema |
|
) |
|
for param_name, param in converted_unet_checkpoint.items(): |
|
set_module_tensor_to_device(unet, param_name, "cpu", value=param) |
|
|
|
|
|
vae_config = create_vae_diffusers_config(original_config, image_size=image_size) |
|
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config) |
|
|
|
if ( |
|
"model" in original_config |
|
and "params" in original_config.model |
|
and "scale_factor" in original_config.model.params |
|
): |
|
vae_scaling_factor = original_config.model.params.scale_factor |
|
else: |
|
vae_scaling_factor = 0.18215 |
|
|
|
vae_config["scaling_factor"] = vae_scaling_factor |
|
|
|
with init_empty_weights(): |
|
vae = AutoencoderKL(**vae_config) |
|
|
|
for param_name, param in converted_vae_checkpoint.items(): |
|
set_module_tensor_to_device(vae, param_name, "cpu", value=param) |
|
|
|
feature_extractor = CLIPImageProcessor.from_pretrained( |
|
"lambdalabs/sd-image-variations-diffusers", subfolder="feature_extractor" |
|
) |
|
image_encoder = CLIPVisionModelWithProjection.from_pretrained( |
|
"lambdalabs/sd-image-variations-diffusers", subfolder="image_encoder" |
|
) |
|
|
|
cc_projection = CCProjection() |
|
cc_projection.load_state_dict( |
|
{ |
|
"projection.weight": checkpoint["cc_projection.weight"].cpu(), |
|
"projection.bias": checkpoint["cc_projection.bias"].cpu(), |
|
} |
|
) |
|
|
|
pipe = Zero1to3StableDiffusionPipeline( |
|
vae, image_encoder, unet, scheduler, None, feature_extractor, cc_projection, requires_safety_checker=False |
|
) |
|
|
|
return pipe |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." |
|
) |
|
parser.add_argument( |
|
"--original_config_file", |
|
default=None, |
|
type=str, |
|
help="The YAML config file corresponding to the original architecture.", |
|
) |
|
parser.add_argument( |
|
"--extract_ema", |
|
action="store_true", |
|
help=( |
|
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" |
|
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" |
|
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." |
|
), |
|
) |
|
parser.add_argument( |
|
"--to_safetensors", |
|
action="store_true", |
|
help="Whether to store pipeline in safetensors format or not.", |
|
) |
|
parser.add_argument("--half", action="store_true", help="Save weights in half precision.") |
|
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") |
|
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") |
|
args = parser.parse_args() |
|
|
|
pipe = convert_from_original_zero123_ckpt( |
|
checkpoint_path=args.checkpoint_path, |
|
original_config_file=args.original_config_file, |
|
extract_ema=args.extract_ema, |
|
device=args.device, |
|
) |
|
|
|
if args.half: |
|
pipe.to(torch_dtype=torch.float16) |
|
|
|
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) |
|
|