|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import platform |
|
from argparse import ArgumentParser |
|
|
|
import huggingface_hub |
|
|
|
from .. import __version__ as version |
|
from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available |
|
from . import BaseDiffusersCLICommand |
|
|
|
|
|
def info_command_factory(_): |
|
return EnvironmentCommand() |
|
|
|
|
|
class EnvironmentCommand(BaseDiffusersCLICommand): |
|
@staticmethod |
|
def register_subcommand(parser: ArgumentParser): |
|
download_parser = parser.add_parser("env") |
|
download_parser.set_defaults(func=info_command_factory) |
|
|
|
def run(self): |
|
hub_version = huggingface_hub.__version__ |
|
|
|
pt_version = "not installed" |
|
pt_cuda_available = "NA" |
|
if is_torch_available(): |
|
import torch |
|
|
|
pt_version = torch.__version__ |
|
pt_cuda_available = torch.cuda.is_available() |
|
|
|
transformers_version = "not installed" |
|
if is_transformers_available(): |
|
import transformers |
|
|
|
transformers_version = transformers.__version__ |
|
|
|
accelerate_version = "not installed" |
|
if is_accelerate_available(): |
|
import accelerate |
|
|
|
accelerate_version = accelerate.__version__ |
|
|
|
xformers_version = "not installed" |
|
if is_xformers_available(): |
|
import xformers |
|
|
|
xformers_version = xformers.__version__ |
|
|
|
info = { |
|
"`diffusers` version": version, |
|
"Platform": platform.platform(), |
|
"Python version": platform.python_version(), |
|
"PyTorch version (GPU?)": f"{pt_version} ({pt_cuda_available})", |
|
"Huggingface_hub version": hub_version, |
|
"Transformers version": transformers_version, |
|
"Accelerate version": accelerate_version, |
|
"xFormers version": xformers_version, |
|
"Using GPU in script?": "<fill in>", |
|
"Using distributed or parallel set-up in script?": "<fill in>", |
|
} |
|
|
|
print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n") |
|
print(self.format_dict(info)) |
|
|
|
return info |
|
|
|
@staticmethod |
|
def format_dict(d): |
|
return "\n".join([f"- {prop}: {val}" for prop, val in d.items()]) + "\n" |
|
|