|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, Transformer2DModel |
|
from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device |
|
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu |
|
|
|
from ..pipeline_params import ( |
|
CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, |
|
CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, |
|
) |
|
from ..test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class DiTPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = DiTPipeline |
|
params = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS |
|
required_optional_params = PipelineTesterMixin.required_optional_params - { |
|
"latents", |
|
"num_images_per_prompt", |
|
"callback", |
|
"callback_steps", |
|
} |
|
batch_params = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
transformer = Transformer2DModel( |
|
sample_size=16, |
|
num_layers=2, |
|
patch_size=4, |
|
attention_head_dim=8, |
|
num_attention_heads=2, |
|
in_channels=4, |
|
out_channels=8, |
|
attention_bias=True, |
|
activation_fn="gelu-approximate", |
|
num_embeds_ada_norm=1000, |
|
norm_type="ada_norm_zero", |
|
norm_elementwise_affine=False, |
|
) |
|
vae = AutoencoderKL() |
|
scheduler = DDIMScheduler() |
|
components = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"class_labels": [1], |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"output_type": "numpy", |
|
} |
|
return inputs |
|
|
|
def test_inference(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
self.assertEqual(image.shape, (1, 16, 16, 3)) |
|
expected_slice = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457]) |
|
max_diff = np.abs(image_slice.flatten() - expected_slice).max() |
|
self.assertLessEqual(max_diff, 1e-3) |
|
|
|
def test_inference_batch_single_identical(self): |
|
self._test_inference_batch_single_identical(relax_max_difference=True, expected_max_diff=1e-3) |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_xformers_available(), |
|
reason="XFormers attention is only available with CUDA and `xformers` installed", |
|
) |
|
def test_xformers_attention_forwardGenerator_pass(self): |
|
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) |
|
|
|
|
|
@require_torch_gpu |
|
@slow |
|
class DiTPipelineIntegrationTests(unittest.TestCase): |
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_dit_256(self): |
|
generator = torch.manual_seed(0) |
|
|
|
pipe = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256") |
|
pipe.to("cuda") |
|
|
|
words = ["vase", "umbrella", "white shark", "white wolf"] |
|
ids = pipe.get_label_ids(words) |
|
|
|
images = pipe(ids, generator=generator, num_inference_steps=40, output_type="np").images |
|
|
|
for word, image in zip(words, images): |
|
expected_image = load_numpy( |
|
f"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" |
|
) |
|
assert np.abs((expected_image - image).max()) < 1e-2 |
|
|
|
def test_dit_512(self): |
|
pipe = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512") |
|
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) |
|
pipe.to("cuda") |
|
|
|
words = ["vase", "umbrella"] |
|
ids = pipe.get_label_ids(words) |
|
|
|
generator = torch.manual_seed(0) |
|
images = pipe(ids, generator=generator, num_inference_steps=25, output_type="np").images |
|
|
|
for word, image in zip(words, images): |
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
f"/dit/{word}_512.npy" |
|
) |
|
|
|
assert np.abs((expected_image - image).max()) < 1e-1 |
|
|