|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import numpy as np |
|
|
|
from diffusers import ( |
|
KandinskyV22CombinedPipeline, |
|
KandinskyV22Img2ImgCombinedPipeline, |
|
KandinskyV22InpaintCombinedPipeline, |
|
) |
|
from diffusers.utils import torch_device |
|
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu |
|
|
|
from ..test_pipelines_common import PipelineTesterMixin |
|
from .test_kandinsky import Dummies |
|
from .test_kandinsky_img2img import Dummies as Img2ImgDummies |
|
from .test_kandinsky_inpaint import Dummies as InpaintDummies |
|
from .test_kandinsky_prior import Dummies as PriorDummies |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class KandinskyV22PipelineCombinedFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = KandinskyV22CombinedPipeline |
|
params = [ |
|
"prompt", |
|
] |
|
batch_params = ["prompt", "negative_prompt"] |
|
required_optional_params = [ |
|
"generator", |
|
"height", |
|
"width", |
|
"latents", |
|
"guidance_scale", |
|
"negative_prompt", |
|
"num_inference_steps", |
|
"return_dict", |
|
"guidance_scale", |
|
"num_images_per_prompt", |
|
"output_type", |
|
"return_dict", |
|
] |
|
test_xformers_attention = False |
|
|
|
def get_dummy_components(self): |
|
dummy = Dummies() |
|
prior_dummy = PriorDummies() |
|
components = dummy.get_dummy_components() |
|
|
|
components.update({f"prior_{k}": v for k, v in prior_dummy.get_dummy_components().items()}) |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
prior_dummy = PriorDummies() |
|
inputs = prior_dummy.get_dummy_inputs(device=device, seed=seed) |
|
inputs.update( |
|
{ |
|
"height": 64, |
|
"width": 64, |
|
} |
|
) |
|
return inputs |
|
|
|
def test_kandinsky(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
|
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(device) |
|
|
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
output = pipe(**self.get_dummy_inputs(device)) |
|
image = output.images |
|
|
|
image_from_tuple = pipe( |
|
**self.get_dummy_inputs(device), |
|
return_dict=False, |
|
)[0] |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
|
|
expected_slice = np.array([0.3013, 0.0471, 0.5176, 0.1817, 0.2566, 0.7076, 0.6712, 0.4421, 0.7503]) |
|
|
|
assert ( |
|
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" |
|
assert ( |
|
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 |
|
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" |
|
|
|
@require_torch_gpu |
|
def test_offloads(self): |
|
pipes = [] |
|
components = self.get_dummy_components() |
|
sd_pipe = self.pipeline_class(**components).to(torch_device) |
|
pipes.append(sd_pipe) |
|
|
|
components = self.get_dummy_components() |
|
sd_pipe = self.pipeline_class(**components) |
|
sd_pipe.enable_model_cpu_offload() |
|
pipes.append(sd_pipe) |
|
|
|
components = self.get_dummy_components() |
|
sd_pipe = self.pipeline_class(**components) |
|
sd_pipe.enable_sequential_cpu_offload() |
|
pipes.append(sd_pipe) |
|
|
|
image_slices = [] |
|
for pipe in pipes: |
|
inputs = self.get_dummy_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
|
|
image_slices.append(image[0, -3:, -3:, -1].flatten()) |
|
|
|
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 |
|
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 |
|
|
|
def test_inference_batch_single_identical(self): |
|
super().test_inference_batch_single_identical(expected_max_diff=1e-2) |
|
|
|
|
|
class KandinskyV22PipelineImg2ImgCombinedFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = KandinskyV22Img2ImgCombinedPipeline |
|
params = ["prompt", "image"] |
|
batch_params = ["prompt", "negative_prompt", "image"] |
|
required_optional_params = [ |
|
"generator", |
|
"height", |
|
"width", |
|
"latents", |
|
"guidance_scale", |
|
"negative_prompt", |
|
"num_inference_steps", |
|
"return_dict", |
|
"guidance_scale", |
|
"num_images_per_prompt", |
|
"output_type", |
|
"return_dict", |
|
] |
|
test_xformers_attention = False |
|
|
|
def get_dummy_components(self): |
|
dummy = Img2ImgDummies() |
|
prior_dummy = PriorDummies() |
|
components = dummy.get_dummy_components() |
|
|
|
components.update({f"prior_{k}": v for k, v in prior_dummy.get_dummy_components().items()}) |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
prior_dummy = PriorDummies() |
|
dummy = Img2ImgDummies() |
|
inputs = prior_dummy.get_dummy_inputs(device=device, seed=seed) |
|
inputs.update(dummy.get_dummy_inputs(device=device, seed=seed)) |
|
inputs.pop("image_embeds") |
|
inputs.pop("negative_image_embeds") |
|
return inputs |
|
|
|
def test_kandinsky(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
|
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(device) |
|
|
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
output = pipe(**self.get_dummy_inputs(device)) |
|
image = output.images |
|
|
|
image_from_tuple = pipe( |
|
**self.get_dummy_inputs(device), |
|
return_dict=False, |
|
)[0] |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
|
|
expected_slice = np.array([0.4353, 0.4710, 0.5128, 0.4806, 0.5054, 0.5348, 0.5224, 0.4603, 0.5025]) |
|
|
|
assert ( |
|
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" |
|
assert ( |
|
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 |
|
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" |
|
|
|
@require_torch_gpu |
|
def test_offloads(self): |
|
pipes = [] |
|
components = self.get_dummy_components() |
|
sd_pipe = self.pipeline_class(**components).to(torch_device) |
|
pipes.append(sd_pipe) |
|
|
|
components = self.get_dummy_components() |
|
sd_pipe = self.pipeline_class(**components) |
|
sd_pipe.enable_model_cpu_offload() |
|
pipes.append(sd_pipe) |
|
|
|
components = self.get_dummy_components() |
|
sd_pipe = self.pipeline_class(**components) |
|
sd_pipe.enable_sequential_cpu_offload() |
|
pipes.append(sd_pipe) |
|
|
|
image_slices = [] |
|
for pipe in pipes: |
|
inputs = self.get_dummy_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
|
|
image_slices.append(image[0, -3:, -3:, -1].flatten()) |
|
|
|
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 |
|
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 |
|
|
|
def test_inference_batch_single_identical(self): |
|
super().test_inference_batch_single_identical(expected_max_diff=1e-2) |
|
|
|
|
|
class KandinskyV22PipelineInpaintCombinedFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = KandinskyV22InpaintCombinedPipeline |
|
params = ["prompt", "image", "mask_image"] |
|
batch_params = ["prompt", "negative_prompt", "image", "mask_image"] |
|
required_optional_params = [ |
|
"generator", |
|
"height", |
|
"width", |
|
"latents", |
|
"guidance_scale", |
|
"negative_prompt", |
|
"num_inference_steps", |
|
"return_dict", |
|
"guidance_scale", |
|
"num_images_per_prompt", |
|
"output_type", |
|
"return_dict", |
|
] |
|
test_xformers_attention = False |
|
|
|
def get_dummy_components(self): |
|
dummy = InpaintDummies() |
|
prior_dummy = PriorDummies() |
|
components = dummy.get_dummy_components() |
|
|
|
components.update({f"prior_{k}": v for k, v in prior_dummy.get_dummy_components().items()}) |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
prior_dummy = PriorDummies() |
|
dummy = InpaintDummies() |
|
inputs = prior_dummy.get_dummy_inputs(device=device, seed=seed) |
|
inputs.update(dummy.get_dummy_inputs(device=device, seed=seed)) |
|
inputs.pop("image_embeds") |
|
inputs.pop("negative_image_embeds") |
|
return inputs |
|
|
|
def test_kandinsky(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
|
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(device) |
|
|
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
output = pipe(**self.get_dummy_inputs(device)) |
|
image = output.images |
|
|
|
image_from_tuple = pipe( |
|
**self.get_dummy_inputs(device), |
|
return_dict=False, |
|
)[0] |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
|
|
expected_slice = np.array([0.5039, 0.4926, 0.4898, 0.4978, 0.4838, 0.4942, 0.4738, 0.4702, 0.4816]) |
|
|
|
assert ( |
|
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" |
|
assert ( |
|
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 |
|
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" |
|
|
|
@require_torch_gpu |
|
def test_offloads(self): |
|
pipes = [] |
|
components = self.get_dummy_components() |
|
sd_pipe = self.pipeline_class(**components).to(torch_device) |
|
pipes.append(sd_pipe) |
|
|
|
components = self.get_dummy_components() |
|
sd_pipe = self.pipeline_class(**components) |
|
sd_pipe.enable_model_cpu_offload() |
|
pipes.append(sd_pipe) |
|
|
|
components = self.get_dummy_components() |
|
sd_pipe = self.pipeline_class(**components) |
|
sd_pipe.enable_sequential_cpu_offload() |
|
pipes.append(sd_pipe) |
|
|
|
image_slices = [] |
|
for pipe in pipes: |
|
inputs = self.get_dummy_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
|
|
image_slices.append(image[0, -3:, -3:, -1].flatten()) |
|
|
|
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 |
|
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 |
|
|
|
def test_inference_batch_single_identical(self): |
|
super().test_inference_batch_single_identical(expected_max_diff=1e-2) |
|
|