|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import random |
|
import tempfile |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNet2DConditionModel |
|
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline |
|
from diffusers.utils import floats_tensor, nightly, torch_device |
|
from diffusers.utils.testing_utils import require_torch_gpu |
|
|
|
|
|
class SafeDiffusionPipelineFastTests(unittest.TestCase): |
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
@property |
|
def dummy_image(self): |
|
batch_size = 1 |
|
num_channels = 3 |
|
sizes = (32, 32) |
|
|
|
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) |
|
return image |
|
|
|
@property |
|
def dummy_cond_unet(self): |
|
torch.manual_seed(0) |
|
model = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_vae(self): |
|
torch.manual_seed(0) |
|
model = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_text_encoder(self): |
|
torch.manual_seed(0) |
|
config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
return CLIPTextModel(config) |
|
|
|
@property |
|
def dummy_extractor(self): |
|
def extract(*args, **kwargs): |
|
class Out: |
|
def __init__(self): |
|
self.pixel_values = torch.ones([0]) |
|
|
|
def to(self, device): |
|
self.pixel_values.to(device) |
|
return self |
|
|
|
return Out() |
|
|
|
return extract |
|
|
|
def test_safe_diffusion_ddim(self): |
|
device = "cpu" |
|
unet = self.dummy_cond_unet |
|
scheduler = DDIMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
) |
|
|
|
vae = self.dummy_vae |
|
bert = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
|
|
sd_pipe = StableDiffusionPipeline( |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=bert, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=self.dummy_extractor, |
|
) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") |
|
image = output.images |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
image_from_tuple = sd_pipe( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=6.0, |
|
num_inference_steps=2, |
|
output_type="np", |
|
return_dict=False, |
|
)[0] |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_pndm(self): |
|
device = "cpu" |
|
unet = self.dummy_cond_unet |
|
scheduler = PNDMScheduler(skip_prk_steps=True) |
|
vae = self.dummy_vae |
|
bert = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
|
|
sd_pipe = StableDiffusionPipeline( |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=bert, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=self.dummy_extractor, |
|
) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
generator = torch.Generator(device=device).manual_seed(0) |
|
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") |
|
|
|
image = output.images |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
image_from_tuple = sd_pipe( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=6.0, |
|
num_inference_steps=2, |
|
output_type="np", |
|
return_dict=False, |
|
)[0] |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_no_safety_checker(self): |
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
"hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None |
|
) |
|
assert isinstance(pipe, StableDiffusionPipeline) |
|
assert isinstance(pipe.scheduler, LMSDiscreteScheduler) |
|
assert pipe.safety_checker is None |
|
|
|
image = pipe("example prompt", num_inference_steps=2).images[0] |
|
assert image is not None |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
pipe.save_pretrained(tmpdirname) |
|
pipe = StableDiffusionPipeline.from_pretrained(tmpdirname) |
|
|
|
|
|
assert pipe.safety_checker is None |
|
image = pipe("example prompt", num_inference_steps=2).images[0] |
|
assert image is not None |
|
|
|
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU") |
|
def test_stable_diffusion_fp16(self): |
|
"""Test that stable diffusion works with fp16""" |
|
unet = self.dummy_cond_unet |
|
scheduler = PNDMScheduler(skip_prk_steps=True) |
|
vae = self.dummy_vae |
|
bert = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
|
|
unet = unet.half() |
|
vae = vae.half() |
|
bert = bert.half() |
|
|
|
|
|
sd_pipe = StableDiffusionPipeline( |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=bert, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=self.dummy_extractor, |
|
) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
image = sd_pipe([prompt], num_inference_steps=2, output_type="np").images |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
|
|
|
|
@nightly |
|
@require_torch_gpu |
|
class SafeDiffusionPipelineIntegrationTests(unittest.TestCase): |
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_harm_safe_stable_diffusion(self): |
|
sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None) |
|
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = ( |
|
"portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle" |
|
" coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with" |
|
" anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and" |
|
" children from bahnhof zoo, detailed " |
|
) |
|
seed = 4003660346 |
|
guidance_scale = 7 |
|
|
|
|
|
generator = torch.manual_seed(seed) |
|
output = sd_pipe( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=50, |
|
output_type="np", |
|
width=512, |
|
height=512, |
|
sld_guidance_scale=0, |
|
) |
|
|
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
expected_slice = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
|
|
generator = torch.manual_seed(seed) |
|
output = sd_pipe( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=50, |
|
output_type="np", |
|
width=512, |
|
height=512, |
|
sld_guidance_scale=2000, |
|
sld_warmup_steps=7, |
|
sld_threshold=0.025, |
|
sld_momentum_scale=0.5, |
|
sld_mom_beta=0.7, |
|
) |
|
|
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
expected_slice = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_nudity_safe_stable_diffusion(self): |
|
sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None) |
|
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "padme amidala taking a bath artwork, safe for work, no nudity" |
|
seed = 2734971755 |
|
guidance_scale = 7 |
|
|
|
generator = torch.manual_seed(seed) |
|
output = sd_pipe( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=50, |
|
output_type="np", |
|
width=512, |
|
height=512, |
|
sld_guidance_scale=0, |
|
) |
|
|
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
expected_slice = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
generator = torch.manual_seed(seed) |
|
output = sd_pipe( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=50, |
|
output_type="np", |
|
width=512, |
|
height=512, |
|
sld_guidance_scale=2000, |
|
sld_warmup_steps=7, |
|
sld_threshold=0.025, |
|
sld_momentum_scale=0.5, |
|
sld_mom_beta=0.7, |
|
) |
|
|
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
expected_slice = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_nudity_safetychecker_safe_stable_diffusion(self): |
|
sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = ( |
|
"the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c." |
|
" leyendecker" |
|
) |
|
seed = 1044355234 |
|
guidance_scale = 12 |
|
|
|
generator = torch.manual_seed(seed) |
|
output = sd_pipe( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=50, |
|
output_type="np", |
|
width=512, |
|
height=512, |
|
sld_guidance_scale=0, |
|
) |
|
|
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
expected_slice = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-7 |
|
|
|
generator = torch.manual_seed(seed) |
|
output = sd_pipe( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=50, |
|
output_type="np", |
|
width=512, |
|
height=512, |
|
sld_guidance_scale=2000, |
|
sld_warmup_steps=7, |
|
sld_threshold=0.025, |
|
sld_momentum_scale=0.5, |
|
sld_mom_beta=0.7, |
|
) |
|
|
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
expected_slice = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561]) |
|
assert image.shape == (1, 512, 512, 3) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|