|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from diffusers import VersatileDiffusionImageVariationPipeline |
|
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device |
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False |
|
|
|
|
|
class VersatileDiffusionImageVariationPipelineFastTests(unittest.TestCase): |
|
pass |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class VersatileDiffusionImageVariationPipelineIntegrationTests(unittest.TestCase): |
|
def test_inference_image_variations(self): |
|
pipe = VersatileDiffusionImageVariationPipeline.from_pretrained("shi-labs/versatile-diffusion") |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
image_prompt = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" |
|
) |
|
generator = torch.manual_seed(0) |
|
image = pipe( |
|
image=image_prompt, |
|
generator=generator, |
|
guidance_scale=7.5, |
|
num_inference_steps=50, |
|
output_type="numpy", |
|
).images |
|
|
|
image_slice = image[0, 253:256, 253:256, -1] |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|