|
import tempfile |
|
|
|
import torch |
|
|
|
from diffusers import DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler |
|
|
|
from .test_schedulers import SchedulerCommonTest |
|
|
|
|
|
class DPMSolverMultistepSchedulerTest(SchedulerCommonTest): |
|
scheduler_classes = (DPMSolverMultistepInverseScheduler,) |
|
forward_default_kwargs = (("num_inference_steps", 25),) |
|
|
|
def get_scheduler_config(self, **kwargs): |
|
config = { |
|
"num_train_timesteps": 1000, |
|
"beta_start": 0.0001, |
|
"beta_end": 0.02, |
|
"beta_schedule": "linear", |
|
"solver_order": 2, |
|
"prediction_type": "epsilon", |
|
"thresholding": False, |
|
"sample_max_value": 1.0, |
|
"algorithm_type": "dpmsolver++", |
|
"solver_type": "midpoint", |
|
"lower_order_final": False, |
|
"lambda_min_clipped": -float("inf"), |
|
"variance_type": None, |
|
} |
|
|
|
config.update(**kwargs) |
|
return config |
|
|
|
def check_over_configs(self, time_step=0, **config): |
|
kwargs = dict(self.forward_default_kwargs) |
|
num_inference_steps = kwargs.pop("num_inference_steps", None) |
|
sample = self.dummy_sample |
|
residual = 0.1 * sample |
|
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10] |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
scheduler_config = self.get_scheduler_config(**config) |
|
scheduler = scheduler_class(**scheduler_config) |
|
scheduler.set_timesteps(num_inference_steps) |
|
|
|
scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order] |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
scheduler.save_config(tmpdirname) |
|
new_scheduler = scheduler_class.from_pretrained(tmpdirname) |
|
new_scheduler.set_timesteps(num_inference_steps) |
|
|
|
new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order] |
|
|
|
output, new_output = sample, sample |
|
for t in range(time_step, time_step + scheduler.config.solver_order + 1): |
|
output = scheduler.step(residual, t, output, **kwargs).prev_sample |
|
new_output = new_scheduler.step(residual, t, new_output, **kwargs).prev_sample |
|
|
|
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" |
|
|
|
def test_from_save_pretrained(self): |
|
pass |
|
|
|
def check_over_forward(self, time_step=0, **forward_kwargs): |
|
kwargs = dict(self.forward_default_kwargs) |
|
num_inference_steps = kwargs.pop("num_inference_steps", None) |
|
sample = self.dummy_sample |
|
residual = 0.1 * sample |
|
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10] |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
scheduler.set_timesteps(num_inference_steps) |
|
|
|
|
|
scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order] |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
scheduler.save_config(tmpdirname) |
|
new_scheduler = scheduler_class.from_pretrained(tmpdirname) |
|
|
|
new_scheduler.set_timesteps(num_inference_steps) |
|
|
|
|
|
new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order] |
|
|
|
output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample |
|
new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample |
|
|
|
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" |
|
|
|
def full_loop(self, scheduler=None, **config): |
|
if scheduler is None: |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config(**config) |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
num_inference_steps = 10 |
|
model = self.dummy_model() |
|
sample = self.dummy_sample_deter |
|
scheduler.set_timesteps(num_inference_steps) |
|
|
|
for i, t in enumerate(scheduler.timesteps): |
|
residual = model(sample, t) |
|
sample = scheduler.step(residual, t, sample).prev_sample |
|
|
|
return sample |
|
|
|
def test_step_shape(self): |
|
kwargs = dict(self.forward_default_kwargs) |
|
|
|
num_inference_steps = kwargs.pop("num_inference_steps", None) |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
sample = self.dummy_sample |
|
residual = 0.1 * sample |
|
|
|
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): |
|
scheduler.set_timesteps(num_inference_steps) |
|
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): |
|
kwargs["num_inference_steps"] = num_inference_steps |
|
|
|
|
|
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10] |
|
scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order] |
|
|
|
time_step_0 = scheduler.timesteps[5] |
|
time_step_1 = scheduler.timesteps[6] |
|
|
|
output_0 = scheduler.step(residual, time_step_0, sample, **kwargs).prev_sample |
|
output_1 = scheduler.step(residual, time_step_1, sample, **kwargs).prev_sample |
|
|
|
self.assertEqual(output_0.shape, sample.shape) |
|
self.assertEqual(output_0.shape, output_1.shape) |
|
|
|
def test_timesteps(self): |
|
for timesteps in [25, 50, 100, 999, 1000]: |
|
self.check_over_configs(num_train_timesteps=timesteps) |
|
|
|
def test_thresholding(self): |
|
self.check_over_configs(thresholding=False) |
|
for order in [1, 2, 3]: |
|
for solver_type in ["midpoint", "heun"]: |
|
for threshold in [0.5, 1.0, 2.0]: |
|
for prediction_type in ["epsilon", "sample"]: |
|
self.check_over_configs( |
|
thresholding=True, |
|
prediction_type=prediction_type, |
|
sample_max_value=threshold, |
|
algorithm_type="dpmsolver++", |
|
solver_order=order, |
|
solver_type=solver_type, |
|
) |
|
|
|
def test_prediction_type(self): |
|
for prediction_type in ["epsilon", "v_prediction"]: |
|
self.check_over_configs(prediction_type=prediction_type) |
|
|
|
def test_solver_order_and_type(self): |
|
for algorithm_type in ["dpmsolver", "dpmsolver++"]: |
|
for solver_type in ["midpoint", "heun"]: |
|
for order in [1, 2, 3]: |
|
for prediction_type in ["epsilon", "sample"]: |
|
self.check_over_configs( |
|
solver_order=order, |
|
solver_type=solver_type, |
|
prediction_type=prediction_type, |
|
algorithm_type=algorithm_type, |
|
) |
|
sample = self.full_loop( |
|
solver_order=order, |
|
solver_type=solver_type, |
|
prediction_type=prediction_type, |
|
algorithm_type=algorithm_type, |
|
) |
|
assert not torch.isnan(sample).any(), "Samples have nan numbers" |
|
|
|
def test_lower_order_final(self): |
|
self.check_over_configs(lower_order_final=True) |
|
self.check_over_configs(lower_order_final=False) |
|
|
|
def test_lambda_min_clipped(self): |
|
self.check_over_configs(lambda_min_clipped=-float("inf")) |
|
self.check_over_configs(lambda_min_clipped=-5.1) |
|
|
|
def test_variance_type(self): |
|
self.check_over_configs(variance_type=None) |
|
self.check_over_configs(variance_type="learned_range") |
|
|
|
def test_timestep_spacing(self): |
|
for timestep_spacing in ["trailing", "leading"]: |
|
self.check_over_configs(timestep_spacing=timestep_spacing) |
|
|
|
def test_inference_steps(self): |
|
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: |
|
self.check_over_forward(num_inference_steps=num_inference_steps, time_step=0) |
|
|
|
def test_full_loop_no_noise(self): |
|
sample = self.full_loop() |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(result_mean.item() - 0.7047) < 1e-3 |
|
|
|
def test_full_loop_no_noise_thres(self): |
|
sample = self.full_loop(thresholding=True, dynamic_thresholding_ratio=0.87, sample_max_value=0.5) |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(result_mean.item() - 19.8933) < 1e-3 |
|
|
|
def test_full_loop_with_v_prediction(self): |
|
sample = self.full_loop(prediction_type="v_prediction") |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(result_mean.item() - 1.5194) < 1e-3 |
|
|
|
def test_full_loop_with_karras_and_v_prediction(self): |
|
sample = self.full_loop(prediction_type="v_prediction", use_karras_sigmas=True) |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(result_mean.item() - 1.7833) < 1e-3 |
|
|
|
def test_switch(self): |
|
|
|
|
|
scheduler = DPMSolverMultistepInverseScheduler(**self.get_scheduler_config()) |
|
sample = self.full_loop(scheduler=scheduler) |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(result_mean.item() - 0.7047) < 1e-3 |
|
|
|
scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config) |
|
scheduler = DPMSolverMultistepInverseScheduler.from_config(scheduler.config) |
|
|
|
sample = self.full_loop(scheduler=scheduler) |
|
new_result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(new_result_mean.item() - result_mean.item()) < 1e-3 |
|
|
|
def test_fp16_support(self): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config(thresholding=True, dynamic_thresholding_ratio=0) |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
num_inference_steps = 10 |
|
model = self.dummy_model() |
|
sample = self.dummy_sample_deter.half() |
|
scheduler.set_timesteps(num_inference_steps) |
|
|
|
for i, t in enumerate(scheduler.timesteps): |
|
residual = model(sample, t) |
|
sample = scheduler.step(residual, t, sample).prev_sample |
|
|
|
assert sample.dtype == torch.float16 |
|
|
|
def test_unique_timesteps(self, **config): |
|
for scheduler_class in self.scheduler_classes: |
|
scheduler_config = self.get_scheduler_config(**config) |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
scheduler.set_timesteps(scheduler.config.num_train_timesteps) |
|
assert len(scheduler.timesteps.unique()) == scheduler.num_inference_steps |
|
|