|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import json |
|
import os |
|
import tempfile |
|
import unittest |
|
from typing import Dict, List, Tuple |
|
|
|
import numpy as np |
|
import torch |
|
|
|
import diffusers |
|
from diffusers import ( |
|
CMStochasticIterativeScheduler, |
|
DDIMScheduler, |
|
DEISMultistepScheduler, |
|
DiffusionPipeline, |
|
EulerAncestralDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
IPNDMScheduler, |
|
LMSDiscreteScheduler, |
|
UniPCMultistepScheduler, |
|
VQDiffusionScheduler, |
|
logging, |
|
) |
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.schedulers.scheduling_utils import SchedulerMixin |
|
from diffusers.utils import torch_device |
|
from diffusers.utils.testing_utils import CaptureLogger |
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False |
|
|
|
|
|
class SchedulerObject(SchedulerMixin, ConfigMixin): |
|
config_name = "config.json" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
a=2, |
|
b=5, |
|
c=(2, 5), |
|
d="for diffusion", |
|
e=[1, 3], |
|
): |
|
pass |
|
|
|
|
|
class SchedulerObject2(SchedulerMixin, ConfigMixin): |
|
config_name = "config.json" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
a=2, |
|
b=5, |
|
c=(2, 5), |
|
d="for diffusion", |
|
f=[1, 3], |
|
): |
|
pass |
|
|
|
|
|
class SchedulerObject3(SchedulerMixin, ConfigMixin): |
|
config_name = "config.json" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
a=2, |
|
b=5, |
|
c=(2, 5), |
|
d="for diffusion", |
|
e=[1, 3], |
|
f=[1, 3], |
|
): |
|
pass |
|
|
|
|
|
class SchedulerBaseTests(unittest.TestCase): |
|
def test_save_load_from_different_config(self): |
|
obj = SchedulerObject() |
|
|
|
|
|
setattr(diffusers, "SchedulerObject", SchedulerObject) |
|
logger = logging.get_logger("diffusers.configuration_utils") |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
obj.save_config(tmpdirname) |
|
with CaptureLogger(logger) as cap_logger_1: |
|
config = SchedulerObject2.load_config(tmpdirname) |
|
new_obj_1 = SchedulerObject2.from_config(config) |
|
|
|
|
|
with open(os.path.join(tmpdirname, SchedulerObject.config_name), "r") as f: |
|
data = json.load(f) |
|
data["unexpected"] = True |
|
|
|
with open(os.path.join(tmpdirname, SchedulerObject.config_name), "w") as f: |
|
json.dump(data, f) |
|
|
|
with CaptureLogger(logger) as cap_logger_2: |
|
config = SchedulerObject.load_config(tmpdirname) |
|
new_obj_2 = SchedulerObject.from_config(config) |
|
|
|
with CaptureLogger(logger) as cap_logger_3: |
|
config = SchedulerObject2.load_config(tmpdirname) |
|
new_obj_3 = SchedulerObject2.from_config(config) |
|
|
|
assert new_obj_1.__class__ == SchedulerObject2 |
|
assert new_obj_2.__class__ == SchedulerObject |
|
assert new_obj_3.__class__ == SchedulerObject2 |
|
|
|
assert cap_logger_1.out == "" |
|
assert ( |
|
cap_logger_2.out |
|
== "The config attributes {'unexpected': True} were passed to SchedulerObject, but are not expected and" |
|
" will" |
|
" be ignored. Please verify your config.json configuration file.\n" |
|
) |
|
assert cap_logger_2.out.replace("SchedulerObject", "SchedulerObject2") == cap_logger_3.out |
|
|
|
def test_save_load_compatible_schedulers(self): |
|
SchedulerObject2._compatibles = ["SchedulerObject"] |
|
SchedulerObject._compatibles = ["SchedulerObject2"] |
|
|
|
obj = SchedulerObject() |
|
|
|
|
|
setattr(diffusers, "SchedulerObject", SchedulerObject) |
|
setattr(diffusers, "SchedulerObject2", SchedulerObject2) |
|
logger = logging.get_logger("diffusers.configuration_utils") |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
obj.save_config(tmpdirname) |
|
|
|
|
|
with open(os.path.join(tmpdirname, SchedulerObject.config_name), "r") as f: |
|
data = json.load(f) |
|
data["f"] = [0, 0] |
|
data["unexpected"] = True |
|
|
|
with open(os.path.join(tmpdirname, SchedulerObject.config_name), "w") as f: |
|
json.dump(data, f) |
|
|
|
with CaptureLogger(logger) as cap_logger: |
|
config = SchedulerObject.load_config(tmpdirname) |
|
new_obj = SchedulerObject.from_config(config) |
|
|
|
assert new_obj.__class__ == SchedulerObject |
|
|
|
assert ( |
|
cap_logger.out |
|
== "The config attributes {'unexpected': True} were passed to SchedulerObject, but are not expected and" |
|
" will" |
|
" be ignored. Please verify your config.json configuration file.\n" |
|
) |
|
|
|
def test_save_load_from_different_config_comp_schedulers(self): |
|
SchedulerObject3._compatibles = ["SchedulerObject", "SchedulerObject2"] |
|
SchedulerObject2._compatibles = ["SchedulerObject", "SchedulerObject3"] |
|
SchedulerObject._compatibles = ["SchedulerObject2", "SchedulerObject3"] |
|
|
|
obj = SchedulerObject() |
|
|
|
|
|
setattr(diffusers, "SchedulerObject", SchedulerObject) |
|
setattr(diffusers, "SchedulerObject2", SchedulerObject2) |
|
setattr(diffusers, "SchedulerObject3", SchedulerObject3) |
|
logger = logging.get_logger("diffusers.configuration_utils") |
|
logger.setLevel(diffusers.logging.INFO) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
obj.save_config(tmpdirname) |
|
|
|
with CaptureLogger(logger) as cap_logger_1: |
|
config = SchedulerObject.load_config(tmpdirname) |
|
new_obj_1 = SchedulerObject.from_config(config) |
|
|
|
with CaptureLogger(logger) as cap_logger_2: |
|
config = SchedulerObject2.load_config(tmpdirname) |
|
new_obj_2 = SchedulerObject2.from_config(config) |
|
|
|
with CaptureLogger(logger) as cap_logger_3: |
|
config = SchedulerObject3.load_config(tmpdirname) |
|
new_obj_3 = SchedulerObject3.from_config(config) |
|
|
|
assert new_obj_1.__class__ == SchedulerObject |
|
assert new_obj_2.__class__ == SchedulerObject2 |
|
assert new_obj_3.__class__ == SchedulerObject3 |
|
|
|
assert cap_logger_1.out == "" |
|
assert cap_logger_2.out == "{'f'} was not found in config. Values will be initialized to default values.\n" |
|
assert cap_logger_3.out == "{'f'} was not found in config. Values will be initialized to default values.\n" |
|
|
|
def test_default_arguments_not_in_config(self): |
|
pipe = DiffusionPipeline.from_pretrained( |
|
"hf-internal-testing/tiny-stable-diffusion-pipe", torch_dtype=torch.float16 |
|
) |
|
assert pipe.scheduler.__class__ == DDIMScheduler |
|
|
|
|
|
assert pipe.scheduler.config.timestep_spacing == "leading" |
|
|
|
|
|
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) |
|
assert pipe.scheduler.config.timestep_spacing == "linspace" |
|
|
|
|
|
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing") |
|
assert pipe.scheduler.config.timestep_spacing == "trailing" |
|
|
|
|
|
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) |
|
assert pipe.scheduler.config.timestep_spacing == "trailing" |
|
|
|
|
|
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) |
|
assert pipe.scheduler.config.timestep_spacing == "trailing" |
|
|
|
def test_default_solver_type_after_switch(self): |
|
pipe = DiffusionPipeline.from_pretrained( |
|
"hf-internal-testing/tiny-stable-diffusion-pipe", torch_dtype=torch.float16 |
|
) |
|
assert pipe.scheduler.__class__ == DDIMScheduler |
|
|
|
pipe.scheduler = DEISMultistepScheduler.from_config(pipe.scheduler.config) |
|
assert pipe.scheduler.config.solver_type == "logrho" |
|
|
|
|
|
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) |
|
assert pipe.scheduler.config.solver_type == "bh2" |
|
|
|
|
|
class SchedulerCommonTest(unittest.TestCase): |
|
scheduler_classes = () |
|
forward_default_kwargs = () |
|
|
|
@property |
|
def dummy_sample(self): |
|
batch_size = 4 |
|
num_channels = 3 |
|
height = 8 |
|
width = 8 |
|
|
|
sample = torch.rand((batch_size, num_channels, height, width)) |
|
|
|
return sample |
|
|
|
@property |
|
def dummy_sample_deter(self): |
|
batch_size = 4 |
|
num_channels = 3 |
|
height = 8 |
|
width = 8 |
|
|
|
num_elems = batch_size * num_channels * height * width |
|
sample = torch.arange(num_elems) |
|
sample = sample.reshape(num_channels, height, width, batch_size) |
|
sample = sample / num_elems |
|
sample = sample.permute(3, 0, 1, 2) |
|
|
|
return sample |
|
|
|
def get_scheduler_config(self): |
|
raise NotImplementedError |
|
|
|
def dummy_model(self): |
|
def model(sample, t, *args): |
|
|
|
if isinstance(t, torch.Tensor): |
|
num_dims = len(sample.shape) |
|
|
|
t = t.reshape(-1, *(1,) * (num_dims - 1)).to(sample.device).to(sample.dtype) |
|
|
|
return sample * t / (t + 1) |
|
|
|
return model |
|
|
|
def check_over_configs(self, time_step=0, **config): |
|
kwargs = dict(self.forward_default_kwargs) |
|
|
|
num_inference_steps = kwargs.pop("num_inference_steps", None) |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
|
|
if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler): |
|
time_step = float(time_step) |
|
|
|
scheduler_config = self.get_scheduler_config(**config) |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
if scheduler_class == CMStochasticIterativeScheduler: |
|
|
|
scaled_sigma_max = scheduler.sigma_to_t(scheduler.config.sigma_max) |
|
time_step = scaled_sigma_max |
|
|
|
if scheduler_class == VQDiffusionScheduler: |
|
num_vec_classes = scheduler_config["num_vec_classes"] |
|
sample = self.dummy_sample(num_vec_classes) |
|
model = self.dummy_model(num_vec_classes) |
|
residual = model(sample, time_step) |
|
else: |
|
sample = self.dummy_sample |
|
residual = 0.1 * sample |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
scheduler.save_config(tmpdirname) |
|
new_scheduler = scheduler_class.from_pretrained(tmpdirname) |
|
|
|
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): |
|
scheduler.set_timesteps(num_inference_steps) |
|
new_scheduler.set_timesteps(num_inference_steps) |
|
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): |
|
kwargs["num_inference_steps"] = num_inference_steps |
|
|
|
|
|
if scheduler_class == CMStochasticIterativeScheduler: |
|
|
|
_ = scheduler.scale_model_input(sample, scaled_sigma_max) |
|
_ = new_scheduler.scale_model_input(sample, scaled_sigma_max) |
|
elif scheduler_class != VQDiffusionScheduler: |
|
_ = scheduler.scale_model_input(sample, 0) |
|
_ = new_scheduler.scale_model_input(sample, 0) |
|
|
|
|
|
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): |
|
kwargs["generator"] = torch.manual_seed(0) |
|
output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample |
|
|
|
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): |
|
kwargs["generator"] = torch.manual_seed(0) |
|
new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample |
|
|
|
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" |
|
|
|
def check_over_forward(self, time_step=0, **forward_kwargs): |
|
kwargs = dict(self.forward_default_kwargs) |
|
kwargs.update(forward_kwargs) |
|
|
|
num_inference_steps = kwargs.pop("num_inference_steps", None) |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler): |
|
time_step = float(time_step) |
|
|
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
if scheduler_class == VQDiffusionScheduler: |
|
num_vec_classes = scheduler_config["num_vec_classes"] |
|
sample = self.dummy_sample(num_vec_classes) |
|
model = self.dummy_model(num_vec_classes) |
|
residual = model(sample, time_step) |
|
else: |
|
sample = self.dummy_sample |
|
residual = 0.1 * sample |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
scheduler.save_config(tmpdirname) |
|
new_scheduler = scheduler_class.from_pretrained(tmpdirname) |
|
|
|
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): |
|
scheduler.set_timesteps(num_inference_steps) |
|
new_scheduler.set_timesteps(num_inference_steps) |
|
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): |
|
kwargs["num_inference_steps"] = num_inference_steps |
|
|
|
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): |
|
kwargs["generator"] = torch.manual_seed(0) |
|
output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample |
|
|
|
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): |
|
kwargs["generator"] = torch.manual_seed(0) |
|
new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample |
|
|
|
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" |
|
|
|
def test_from_save_pretrained(self): |
|
kwargs = dict(self.forward_default_kwargs) |
|
|
|
num_inference_steps = kwargs.pop("num_inference_steps", None) |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
timestep = 1 |
|
if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler): |
|
timestep = float(timestep) |
|
|
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
if scheduler_class == CMStochasticIterativeScheduler: |
|
|
|
timestep = scheduler.sigma_to_t(scheduler.config.sigma_max) |
|
|
|
if scheduler_class == VQDiffusionScheduler: |
|
num_vec_classes = scheduler_config["num_vec_classes"] |
|
sample = self.dummy_sample(num_vec_classes) |
|
model = self.dummy_model(num_vec_classes) |
|
residual = model(sample, timestep) |
|
else: |
|
sample = self.dummy_sample |
|
residual = 0.1 * sample |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
scheduler.save_config(tmpdirname) |
|
new_scheduler = scheduler_class.from_pretrained(tmpdirname) |
|
|
|
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): |
|
scheduler.set_timesteps(num_inference_steps) |
|
new_scheduler.set_timesteps(num_inference_steps) |
|
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): |
|
kwargs["num_inference_steps"] = num_inference_steps |
|
|
|
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): |
|
kwargs["generator"] = torch.manual_seed(0) |
|
output = scheduler.step(residual, timestep, sample, **kwargs).prev_sample |
|
|
|
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): |
|
kwargs["generator"] = torch.manual_seed(0) |
|
new_output = new_scheduler.step(residual, timestep, sample, **kwargs).prev_sample |
|
|
|
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" |
|
|
|
def test_compatibles(self): |
|
for scheduler_class in self.scheduler_classes: |
|
scheduler_config = self.get_scheduler_config() |
|
|
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
assert all(c is not None for c in scheduler.compatibles) |
|
|
|
for comp_scheduler_cls in scheduler.compatibles: |
|
comp_scheduler = comp_scheduler_cls.from_config(scheduler.config) |
|
assert comp_scheduler is not None |
|
|
|
new_scheduler = scheduler_class.from_config(comp_scheduler.config) |
|
|
|
new_scheduler_config = {k: v for k, v in new_scheduler.config.items() if k in scheduler.config} |
|
scheduler_diff = {k: v for k, v in new_scheduler.config.items() if k not in scheduler.config} |
|
|
|
|
|
assert new_scheduler_config == dict(scheduler.config) |
|
|
|
|
|
init_keys = inspect.signature(scheduler_class.__init__).parameters.keys() |
|
assert set(scheduler_diff.keys()).intersection(set(init_keys)) == set() |
|
|
|
def test_from_pretrained(self): |
|
for scheduler_class in self.scheduler_classes: |
|
scheduler_config = self.get_scheduler_config() |
|
|
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
scheduler.save_pretrained(tmpdirname) |
|
new_scheduler = scheduler_class.from_pretrained(tmpdirname) |
|
|
|
|
|
scheduler_config = dict(scheduler.config) |
|
del scheduler_config["_use_default_values"] |
|
|
|
assert scheduler_config == new_scheduler.config |
|
|
|
def test_step_shape(self): |
|
kwargs = dict(self.forward_default_kwargs) |
|
|
|
num_inference_steps = kwargs.pop("num_inference_steps", None) |
|
|
|
timestep_0 = 0 |
|
timestep_1 = 1 |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler): |
|
timestep_0 = float(timestep_0) |
|
timestep_1 = float(timestep_1) |
|
|
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
if scheduler_class == VQDiffusionScheduler: |
|
num_vec_classes = scheduler_config["num_vec_classes"] |
|
sample = self.dummy_sample(num_vec_classes) |
|
model = self.dummy_model(num_vec_classes) |
|
residual = model(sample, timestep_0) |
|
else: |
|
sample = self.dummy_sample |
|
residual = 0.1 * sample |
|
|
|
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): |
|
scheduler.set_timesteps(num_inference_steps) |
|
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): |
|
kwargs["num_inference_steps"] = num_inference_steps |
|
|
|
output_0 = scheduler.step(residual, timestep_0, sample, **kwargs).prev_sample |
|
output_1 = scheduler.step(residual, timestep_1, sample, **kwargs).prev_sample |
|
|
|
self.assertEqual(output_0.shape, sample.shape) |
|
self.assertEqual(output_0.shape, output_1.shape) |
|
|
|
def test_scheduler_outputs_equivalence(self): |
|
def set_nan_tensor_to_zero(t): |
|
t[t != t] = 0 |
|
return t |
|
|
|
def recursive_check(tuple_object, dict_object): |
|
if isinstance(tuple_object, (List, Tuple)): |
|
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()): |
|
recursive_check(tuple_iterable_value, dict_iterable_value) |
|
elif isinstance(tuple_object, Dict): |
|
for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()): |
|
recursive_check(tuple_iterable_value, dict_iterable_value) |
|
elif tuple_object is None: |
|
return |
|
else: |
|
self.assertTrue( |
|
torch.allclose( |
|
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5 |
|
), |
|
msg=( |
|
"Tuple and dict output are not equal. Difference:" |
|
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" |
|
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" |
|
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." |
|
), |
|
) |
|
|
|
kwargs = dict(self.forward_default_kwargs) |
|
num_inference_steps = kwargs.pop("num_inference_steps", 50) |
|
|
|
timestep = 0 |
|
if len(self.scheduler_classes) > 0 and self.scheduler_classes[0] == IPNDMScheduler: |
|
timestep = 1 |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler): |
|
timestep = float(timestep) |
|
|
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
if scheduler_class == CMStochasticIterativeScheduler: |
|
|
|
timestep = scheduler.sigma_to_t(scheduler.config.sigma_max) |
|
|
|
if scheduler_class == VQDiffusionScheduler: |
|
num_vec_classes = scheduler_config["num_vec_classes"] |
|
sample = self.dummy_sample(num_vec_classes) |
|
model = self.dummy_model(num_vec_classes) |
|
residual = model(sample, timestep) |
|
else: |
|
sample = self.dummy_sample |
|
residual = 0.1 * sample |
|
|
|
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): |
|
scheduler.set_timesteps(num_inference_steps) |
|
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): |
|
kwargs["num_inference_steps"] = num_inference_steps |
|
|
|
|
|
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): |
|
kwargs["generator"] = torch.manual_seed(0) |
|
outputs_dict = scheduler.step(residual, timestep, sample, **kwargs) |
|
|
|
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): |
|
scheduler.set_timesteps(num_inference_steps) |
|
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): |
|
kwargs["num_inference_steps"] = num_inference_steps |
|
|
|
|
|
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): |
|
kwargs["generator"] = torch.manual_seed(0) |
|
outputs_tuple = scheduler.step(residual, timestep, sample, return_dict=False, **kwargs) |
|
|
|
recursive_check(outputs_tuple, outputs_dict) |
|
|
|
def test_scheduler_public_api(self): |
|
for scheduler_class in self.scheduler_classes: |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
if scheduler_class != VQDiffusionScheduler: |
|
self.assertTrue( |
|
hasattr(scheduler, "init_noise_sigma"), |
|
f"{scheduler_class} does not implement a required attribute `init_noise_sigma`", |
|
) |
|
self.assertTrue( |
|
hasattr(scheduler, "scale_model_input"), |
|
( |
|
f"{scheduler_class} does not implement a required class method `scale_model_input(sample," |
|
" timestep)`" |
|
), |
|
) |
|
self.assertTrue( |
|
hasattr(scheduler, "step"), |
|
f"{scheduler_class} does not implement a required class method `step(...)`", |
|
) |
|
|
|
if scheduler_class != VQDiffusionScheduler: |
|
sample = self.dummy_sample |
|
if scheduler_class == CMStochasticIterativeScheduler: |
|
|
|
scaled_sigma_max = scheduler.sigma_to_t(scheduler.config.sigma_max) |
|
scaled_sample = scheduler.scale_model_input(sample, scaled_sigma_max) |
|
else: |
|
scaled_sample = scheduler.scale_model_input(sample, 0.0) |
|
self.assertEqual(sample.shape, scaled_sample.shape) |
|
|
|
def test_add_noise_device(self): |
|
for scheduler_class in self.scheduler_classes: |
|
if scheduler_class == IPNDMScheduler: |
|
continue |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
scheduler.set_timesteps(100) |
|
|
|
sample = self.dummy_sample.to(torch_device) |
|
if scheduler_class == CMStochasticIterativeScheduler: |
|
|
|
scaled_sigma_max = scheduler.sigma_to_t(scheduler.config.sigma_max) |
|
scaled_sample = scheduler.scale_model_input(sample, scaled_sigma_max) |
|
else: |
|
scaled_sample = scheduler.scale_model_input(sample, 0.0) |
|
self.assertEqual(sample.shape, scaled_sample.shape) |
|
|
|
noise = torch.randn_like(scaled_sample).to(torch_device) |
|
t = scheduler.timesteps[5][None] |
|
noised = scheduler.add_noise(scaled_sample, noise, t) |
|
self.assertEqual(noised.shape, scaled_sample.shape) |
|
|
|
def test_deprecated_kwargs(self): |
|
for scheduler_class in self.scheduler_classes: |
|
has_kwarg_in_model_class = "kwargs" in inspect.signature(scheduler_class.__init__).parameters |
|
has_deprecated_kwarg = len(scheduler_class._deprecated_kwargs) > 0 |
|
|
|
if has_kwarg_in_model_class and not has_deprecated_kwarg: |
|
raise ValueError( |
|
f"{scheduler_class} has `**kwargs` in its __init__ method but has not defined any deprecated" |
|
" kwargs under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if" |
|
" there are no deprecated arguments or add the deprecated argument with `_deprecated_kwargs =" |
|
" [<deprecated_argument>]`" |
|
) |
|
|
|
if not has_kwarg_in_model_class and has_deprecated_kwarg: |
|
raise ValueError( |
|
f"{scheduler_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated" |
|
" kwargs under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs`" |
|
f" argument to {self.model_class}.__init__ if there are deprecated arguments or remove the" |
|
" deprecated argument from `_deprecated_kwargs = [<deprecated_argument>]`" |
|
) |
|
|
|
def test_trained_betas(self): |
|
for scheduler_class in self.scheduler_classes: |
|
if scheduler_class in (VQDiffusionScheduler, CMStochasticIterativeScheduler): |
|
continue |
|
|
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config, trained_betas=np.array([0.1, 0.3])) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
scheduler.save_pretrained(tmpdirname) |
|
new_scheduler = scheduler_class.from_pretrained(tmpdirname) |
|
|
|
assert scheduler.betas.tolist() == new_scheduler.betas.tolist() |
|
|
|
def test_getattr_is_correct(self): |
|
for scheduler_class in self.scheduler_classes: |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
|
|
scheduler.dummy_attribute = 5 |
|
scheduler.register_to_config(test_attribute=5) |
|
|
|
logger = logging.get_logger("diffusers.configuration_utils") |
|
|
|
logger.setLevel(30) |
|
with CaptureLogger(logger) as cap_logger: |
|
assert hasattr(scheduler, "dummy_attribute") |
|
assert getattr(scheduler, "dummy_attribute") == 5 |
|
assert scheduler.dummy_attribute == 5 |
|
|
|
|
|
assert cap_logger.out == "" |
|
|
|
logger = logging.get_logger("diffusers.schedulers.schedulering_utils") |
|
|
|
logger.setLevel(30) |
|
with CaptureLogger(logger) as cap_logger: |
|
assert hasattr(scheduler, "save_pretrained") |
|
fn = scheduler.save_pretrained |
|
fn_1 = getattr(scheduler, "save_pretrained") |
|
|
|
assert fn == fn_1 |
|
|
|
assert cap_logger.out == "" |
|
|
|
|
|
with self.assertWarns(FutureWarning): |
|
assert scheduler.test_attribute == 5 |
|
|
|
with self.assertWarns(FutureWarning): |
|
assert getattr(scheduler, "test_attribute") == 5 |
|
|
|
with self.assertRaises(AttributeError) as error: |
|
scheduler.does_not_exist |
|
|
|
assert str(error.exception) == f"'{type(scheduler).__name__}' object has no attribute 'does_not_exist'" |
|
|