# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import unittest import torch from diffusers import ( IFImg2ImgPipeline, IFImg2ImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class IFPipelineFastTests(PipelineTesterMixin, IFPipelineTesterMixin, unittest.TestCase): pipeline_class = IFPipeline params = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} batch_params = TEXT_TO_IMAGE_BATCH_PARAMS required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"} def get_dummy_components(self): return self._get_dummy_components() def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def test_save_load_optional_components(self): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA") def test_save_load_float16(self): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_float16(expected_max_diff=1e-1) def test_attention_slicing_forward_pass(self): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2) def test_save_load_local(self): self._test_save_load_local() def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical( expected_max_diff=1e-2, ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_attention_forwardGenerator_pass(self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) @slow @require_torch_gpu class IFPipelineSlowTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_all(self): # if pipe_1 = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16) pipe_2 = IFSuperResolutionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0", variant="fp16", torch_dtype=torch.float16, text_encoder=None, tokenizer=None ) # pre compute text embeddings and remove T5 to save memory pipe_1.text_encoder.to("cuda") prompt_embeds, negative_prompt_embeds = pipe_1.encode_prompt("anime turtle", device="cuda") del pipe_1.tokenizer del pipe_1.text_encoder gc.collect() pipe_1.tokenizer = None pipe_1.text_encoder = None pipe_1.enable_model_cpu_offload() pipe_2.enable_model_cpu_offload() pipe_1.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_2.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds) pipe_1.remove_all_hooks() pipe_2.remove_all_hooks() # img2img pipe_1 = IFImg2ImgPipeline(**pipe_1.components) pipe_2 = IFImg2ImgSuperResolutionPipeline(**pipe_2.components) pipe_1.enable_model_cpu_offload() pipe_2.enable_model_cpu_offload() pipe_1.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_2.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_img2img(pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds) pipe_1.remove_all_hooks() pipe_2.remove_all_hooks() # inpainting pipe_1 = IFInpaintingPipeline(**pipe_1.components) pipe_2 = IFInpaintingSuperResolutionPipeline(**pipe_2.components) pipe_1.enable_model_cpu_offload() pipe_2.enable_model_cpu_offload() pipe_1.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_2.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds) def _test_if(self, pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds): # pipeline 1 _start_torch_memory_measurement() generator = torch.Generator(device="cpu").manual_seed(0) output = pipe_1( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=2, generator=generator, output_type="np", ) image = output.images[0] assert image.shape == (64, 64, 3) mem_bytes = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" ) assert_mean_pixel_difference(image, expected_image) # pipeline 2 _start_torch_memory_measurement() generator = torch.Generator(device="cpu").manual_seed(0) image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device) output = pipe_2( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, image=image, generator=generator, num_inference_steps=2, output_type="np", ) image = output.images[0] assert image.shape == (256, 256, 3) mem_bytes = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" ) assert_mean_pixel_difference(image, expected_image) def _test_if_img2img(self, pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds): # pipeline 1 _start_torch_memory_measurement() image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device) generator = torch.Generator(device="cpu").manual_seed(0) output = pipe_1( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, image=image, num_inference_steps=2, generator=generator, output_type="np", ) image = output.images[0] assert image.shape == (64, 64, 3) mem_bytes = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" ) assert_mean_pixel_difference(image, expected_image) # pipeline 2 _start_torch_memory_measurement() generator = torch.Generator(device="cpu").manual_seed(0) original_image = floats_tensor((1, 3, 256, 256), rng=random.Random(0)).to(torch_device) image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device) output = pipe_2( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, image=image, original_image=original_image, generator=generator, num_inference_steps=2, output_type="np", ) image = output.images[0] assert image.shape == (256, 256, 3) mem_bytes = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" ) assert_mean_pixel_difference(image, expected_image) def _test_if_inpainting(self, pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds): # pipeline 1 _start_torch_memory_measurement() image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device) mask_image = floats_tensor((1, 3, 64, 64), rng=random.Random(1)).to(torch_device) generator = torch.Generator(device="cpu").manual_seed(0) output = pipe_1( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, image=image, mask_image=mask_image, num_inference_steps=2, generator=generator, output_type="np", ) image = output.images[0] assert image.shape == (64, 64, 3) mem_bytes = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" ) assert_mean_pixel_difference(image, expected_image) # pipeline 2 _start_torch_memory_measurement() generator = torch.Generator(device="cpu").manual_seed(0) image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device) original_image = floats_tensor((1, 3, 256, 256), rng=random.Random(0)).to(torch_device) mask_image = floats_tensor((1, 3, 256, 256), rng=random.Random(1)).to(torch_device) output = pipe_2( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, image=image, mask_image=mask_image, original_image=original_image, generator=generator, num_inference_steps=2, output_type="np", ) image = output.images[0] assert image.shape == (256, 256, 3) mem_bytes = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" ) assert_mean_pixel_difference(image, expected_image) def _start_torch_memory_measurement(): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()