# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import PIL import torch from diffusers.image_processor import VaeImageProcessor class ImageProcessorTest(unittest.TestCase): @property def dummy_sample(self): batch_size = 1 num_channels = 3 height = 8 width = 8 sample = torch.rand((batch_size, num_channels, height, width)) return sample def to_np(self, image): if isinstance(image[0], PIL.Image.Image): return np.stack([np.array(i) for i in image], axis=0) elif isinstance(image, torch.Tensor): return image.cpu().numpy().transpose(0, 2, 3, 1) return image def test_vae_image_processor_pt(self): image_processor = VaeImageProcessor(do_resize=False, do_normalize=True) input_pt = self.dummy_sample input_np = self.to_np(input_pt) for output_type in ["pt", "np", "pil"]: out = image_processor.postprocess( image_processor.preprocess(input_pt), output_type=output_type, ) out_np = self.to_np(out) in_np = (input_np * 255).round() if output_type == "pil" else input_np assert ( np.abs(in_np - out_np).max() < 1e-6 ), f"decoded output does not match input for output_type {output_type}" def test_vae_image_processor_np(self): image_processor = VaeImageProcessor(do_resize=False, do_normalize=True) input_np = self.dummy_sample.cpu().numpy().transpose(0, 2, 3, 1) for output_type in ["pt", "np", "pil"]: out = image_processor.postprocess(image_processor.preprocess(input_np), output_type=output_type) out_np = self.to_np(out) in_np = (input_np * 255).round() if output_type == "pil" else input_np assert ( np.abs(in_np - out_np).max() < 1e-6 ), f"decoded output does not match input for output_type {output_type}" def test_vae_image_processor_pil(self): image_processor = VaeImageProcessor(do_resize=False, do_normalize=True) input_np = self.dummy_sample.cpu().numpy().transpose(0, 2, 3, 1) input_pil = image_processor.numpy_to_pil(input_np) for output_type in ["pt", "np", "pil"]: out = image_processor.postprocess(image_processor.preprocess(input_pil), output_type=output_type) for i, o in zip(input_pil, out): in_np = np.array(i) out_np = self.to_np(out) if output_type == "pil" else (self.to_np(out) * 255).round() assert ( np.abs(in_np - out_np).max() < 1e-6 ), f"decoded output does not match input for output_type {output_type}" def test_preprocess_input_3d(self): image_processor = VaeImageProcessor(do_resize=False, do_normalize=False) input_pt_4d = self.dummy_sample input_pt_3d = input_pt_4d.squeeze(0) out_pt_4d = image_processor.postprocess( image_processor.preprocess(input_pt_4d), output_type="np", ) out_pt_3d = image_processor.postprocess( image_processor.preprocess(input_pt_3d), output_type="np", ) input_np_4d = self.to_np(self.dummy_sample) input_np_3d = input_np_4d.squeeze(0) out_np_4d = image_processor.postprocess( image_processor.preprocess(input_np_4d), output_type="np", ) out_np_3d = image_processor.postprocess( image_processor.preprocess(input_np_3d), output_type="np", ) assert np.abs(out_pt_4d - out_pt_3d).max() < 1e-6 assert np.abs(out_np_4d - out_np_3d).max() < 1e-6 def test_preprocess_input_list(self): image_processor = VaeImageProcessor(do_resize=False, do_normalize=False) input_pt_4d = self.dummy_sample input_pt_list = list(input_pt_4d) out_pt_4d = image_processor.postprocess( image_processor.preprocess(input_pt_4d), output_type="np", ) out_pt_list = image_processor.postprocess( image_processor.preprocess(input_pt_list), output_type="np", ) input_np_4d = self.to_np(self.dummy_sample) list(input_np_4d) out_np_4d = image_processor.postprocess( image_processor.preprocess(input_pt_4d), output_type="np", ) out_np_list = image_processor.postprocess( image_processor.preprocess(input_pt_list), output_type="np", ) assert np.abs(out_pt_4d - out_pt_list).max() < 1e-6 assert np.abs(out_np_4d - out_np_list).max() < 1e-6