--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: stammer-small results: [] --- # stammer-small This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4497 - Wer: 35.7430 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.9039 | 0.3968 | 25 | 0.7568 | 42.1687 | | 0.4742 | 0.7937 | 50 | 0.4766 | 35.9438 | | 0.3073 | 1.1905 | 75 | 0.4589 | 35.1406 | | 0.3061 | 1.5873 | 100 | 0.4497 | 35.7430 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.1.0+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1