strauss-oak
commited on
Commit
•
b931244
1
Parent(s):
b62135b
Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +7 -0
- README.md +147 -73
- config.json +27 -14
- config_sentence_transformers.json +7 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +15 -0
- tokenizer.json +3 -0
- tokenizer_config.json +61 -0
.gitattributes
CHANGED
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
ctfidf_config.json filter=lfs diff=lfs merge=lfs -text
|
|
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
ctfidf_config.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
CHANGED
@@ -1,89 +1,163 @@
|
|
1 |
-
|
2 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
tags:
|
4 |
-
-
|
5 |
-
|
6 |
-
|
|
|
7 |
---
|
8 |
|
9 |
-
#
|
|
|
|
|
10 |
|
11 |
-
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model.
|
12 |
-
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
|
13 |
|
14 |
-
## Usage
|
15 |
|
16 |
-
|
|
|
|
|
17 |
|
18 |
```
|
19 |
-
pip install -U
|
20 |
```
|
21 |
|
22 |
-
|
23 |
|
24 |
```python
|
25 |
-
from
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
```
|
30 |
|
31 |
-
##
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
| 5 | chuva - sul - feira - chuvas - energia | 690 | 5_chuva_sul_feira_chuvas |
|
48 |
-
| 6 | preco - precos - produto - petrobras - combustiveis | 619 | 6_preco_precos_produto_petrobras |
|
49 |
-
| 7 | hospital - anos - familia - paulo - disse | 617 | 7_hospital_anos_familia_paulo |
|
50 |
-
| 8 | inflacao - juros - alta - taxa - economia | 501 | 8_inflacao_juros_alta_taxa |
|
51 |
-
| 9 | dezenas - aposta - premio - probabilidade - caixa | 378 | 9_dezenas_aposta_premio_probabilidade |
|
52 |
-
| 10 | voo - aeronave - aviao - voos - aeroporto | 370 | 10_voo_aeronave_aviao_voos |
|
53 |
-
| 11 | internet - iphone - rede - facebook - usuarios | 360 | 11_internet_iphone_rede_facebook |
|
54 |
-
| 12 | valor - pagamento - declaracao - valores - imposto | 342 | 12_valor_pagamento_declaracao_valores |
|
55 |
-
| 13 | fase - manifestantes - servicos - funcionar - paulo | 336 | 13_fase_manifestantes_servicos_funcionar |
|
56 |
-
| 14 | desmatamento - amazonia - indigenas - emissoes - brasil | 333 | 14_desmatamento_amazonia_indigenas_emissoes |
|
57 |
-
| 15 | taliba - israel - afeganistao - hamas - gaza | 327 | 15_taliba_israel_afeganistao_hamas |
|
58 |
-
| 16 | trabalho - trimestre - milhoes - trabalhadores - pessoas | 167 | 16_trabalho_trimestre_milhoes_trabalhadores |
|
59 |
-
| 17 | pessoas - genero - trans - racismo - lgbtqia | 97 | 17_pessoas_genero_trans_racismo |
|
60 |
-
| 18 | licenca - paternidade - licenca paternidade - piangers - ovulos | 91 | 18_licenca_paternidade_licenca paternidade_piangers |
|
61 |
-
|
62 |
-
</details>
|
63 |
-
|
64 |
-
## Training hyperparameters
|
65 |
-
|
66 |
-
* calculate_probabilities: False
|
67 |
-
* language: None
|
68 |
-
* low_memory: False
|
69 |
-
* min_topic_size: 10
|
70 |
-
* n_gram_range: (1, 1)
|
71 |
-
* nr_topics: 20
|
72 |
-
* seed_topic_list: None
|
73 |
-
* top_n_words: 10
|
74 |
-
* verbose: False
|
75 |
-
* zeroshot_min_similarity: 0.7
|
76 |
-
* zeroshot_topic_list: None
|
77 |
-
|
78 |
-
## Framework versions
|
79 |
-
|
80 |
-
* Numpy: 1.23.5
|
81 |
-
* HDBSCAN: 0.8.33
|
82 |
-
* UMAP: 0.5.5
|
83 |
-
* Pandas: 1.5.3
|
84 |
-
* Scikit-Learn: 1.2.2
|
85 |
-
* Sentence-transformers: 2.2.2
|
86 |
-
* Transformers: 4.35.2
|
87 |
-
* Numba: 0.58.1
|
88 |
-
* Plotly: 5.15.0
|
89 |
-
* Python: 3.10.12
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- multilingual
|
4 |
+
- ar
|
5 |
+
- bg
|
6 |
+
- ca
|
7 |
+
- cs
|
8 |
+
- da
|
9 |
+
- de
|
10 |
+
- el
|
11 |
+
- en
|
12 |
+
- es
|
13 |
+
- et
|
14 |
+
- fa
|
15 |
+
- fi
|
16 |
+
- fr
|
17 |
+
- gl
|
18 |
+
- gu
|
19 |
+
- he
|
20 |
+
- hi
|
21 |
+
- hr
|
22 |
+
- hu
|
23 |
+
- hy
|
24 |
+
- id
|
25 |
+
- it
|
26 |
+
- ja
|
27 |
+
- ka
|
28 |
+
- ko
|
29 |
+
- ku
|
30 |
+
- lt
|
31 |
+
- lv
|
32 |
+
- mk
|
33 |
+
- mn
|
34 |
+
- mr
|
35 |
+
- ms
|
36 |
+
- my
|
37 |
+
- nb
|
38 |
+
- nl
|
39 |
+
- pl
|
40 |
+
- pt
|
41 |
+
- ro
|
42 |
+
- ru
|
43 |
+
- sk
|
44 |
+
- sl
|
45 |
+
- sq
|
46 |
+
- sr
|
47 |
+
- sv
|
48 |
+
- th
|
49 |
+
- tr
|
50 |
+
- uk
|
51 |
+
- ur
|
52 |
+
- vi
|
53 |
+
language_bcp47:
|
54 |
+
- fr-ca
|
55 |
+
- pt-br
|
56 |
+
- zh-cn
|
57 |
+
- zh-tw
|
58 |
+
pipeline_tag: sentence-similarity
|
59 |
+
license: apache-2.0
|
60 |
tags:
|
61 |
+
- sentence-transformers
|
62 |
+
- feature-extraction
|
63 |
+
- sentence-similarity
|
64 |
+
- transformers
|
65 |
---
|
66 |
|
67 |
+
# sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
68 |
+
|
69 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
70 |
|
|
|
|
|
71 |
|
|
|
72 |
|
73 |
+
## Usage (Sentence-Transformers)
|
74 |
+
|
75 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
76 |
|
77 |
```
|
78 |
+
pip install -U sentence-transformers
|
79 |
```
|
80 |
|
81 |
+
Then you can use the model like this:
|
82 |
|
83 |
```python
|
84 |
+
from sentence_transformers import SentenceTransformer
|
85 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
86 |
+
|
87 |
+
model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')
|
88 |
+
embeddings = model.encode(sentences)
|
89 |
+
print(embeddings)
|
90 |
+
```
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
## Usage (HuggingFace Transformers)
|
95 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
96 |
+
|
97 |
+
```python
|
98 |
+
from transformers import AutoTokenizer, AutoModel
|
99 |
+
import torch
|
100 |
+
|
101 |
+
|
102 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
103 |
+
def mean_pooling(model_output, attention_mask):
|
104 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
105 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
106 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
107 |
+
|
108 |
+
|
109 |
+
# Sentences we want sentence embeddings for
|
110 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
111 |
+
|
112 |
+
# Load model from HuggingFace Hub
|
113 |
+
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')
|
114 |
+
model = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')
|
115 |
|
116 |
+
# Tokenize sentences
|
117 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
118 |
+
|
119 |
+
# Compute token embeddings
|
120 |
+
with torch.no_grad():
|
121 |
+
model_output = model(**encoded_input)
|
122 |
+
|
123 |
+
# Perform pooling. In this case, average pooling
|
124 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
125 |
+
|
126 |
+
print("Sentence embeddings:")
|
127 |
+
print(sentence_embeddings)
|
128 |
+
```
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
## Evaluation Results
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-multilingual-mpnet-base-v2)
|
137 |
+
|
138 |
+
|
139 |
+
|
140 |
+
## Full Model Architecture
|
141 |
+
```
|
142 |
+
SentenceTransformer(
|
143 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
144 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
145 |
+
)
|
146 |
```
|
147 |
|
148 |
+
## Citing & Authors
|
149 |
+
|
150 |
+
This model was trained by [sentence-transformers](https://www.sbert.net/).
|
151 |
+
|
152 |
+
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
|
153 |
+
```bibtex
|
154 |
+
@inproceedings{reimers-2019-sentence-bert,
|
155 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
156 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
157 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
158 |
+
month = "11",
|
159 |
+
year = "2019",
|
160 |
+
publisher = "Association for Computational Linguistics",
|
161 |
+
url = "http://arxiv.org/abs/1908.10084",
|
162 |
+
}
|
163 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
CHANGED
@@ -1,16 +1,29 @@
|
|
1 |
{
|
2 |
-
"
|
3 |
-
"
|
4 |
-
|
5 |
-
"min_topic_size": 10,
|
6 |
-
"n_gram_range": [
|
7 |
-
1,
|
8 |
-
1
|
9 |
],
|
10 |
-
"
|
11 |
-
"
|
12 |
-
"
|
13 |
-
"
|
14 |
-
"
|
15 |
-
"
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_paraphrase-multilingual-mpnet-base-v2/",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
|
|
|
|
|
|
|
|
5 |
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "xlm-roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"output_past": true,
|
22 |
+
"pad_token_id": 1,
|
23 |
+
"position_embedding_type": "absolute",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.35.2",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 250002
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.7.0",
|
5 |
+
"pytorch": "1.9.0+cu102"
|
6 |
+
}
|
7 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2eb113e32dd129f5fbfd09b1accdb069d27305d7a570a7c60460a750bb53193d
|
3 |
+
size 1112197096
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa685fc160bbdbab64058d4fc91b60e62d207e8dc60b9af5c002c5ab946ded00
|
3 |
+
size 17083009
|
tokenizer_config.json
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"max_length": 128,
|
50 |
+
"model_max_length": 512,
|
51 |
+
"pad_to_multiple_of": null,
|
52 |
+
"pad_token": "<pad>",
|
53 |
+
"pad_token_type_id": 0,
|
54 |
+
"padding_side": "right",
|
55 |
+
"sep_token": "</s>",
|
56 |
+
"stride": 0,
|
57 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
58 |
+
"truncation_side": "right",
|
59 |
+
"truncation_strategy": "longest_first",
|
60 |
+
"unk_token": "<unk>"
|
61 |
+
}
|