--- license: bigcode-openrail-m library_name: peft tags: - generated_from_trainer base_model: aurora-m/aurora-m-v0.1 model-index: - name: lora-out results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: aurora-m/aurora-m-v0.1 # this can be swapped for mdel model when the model is released model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer is_llama_derived_model: false load_in_8bit: false # when this is true inference quality is terrible load_in_4bit: false strict: false datasets: - path: /workspace/axolotl-mdel/mtg.txt # change this to where your dataset is type: completion # change this to 'alpaca' if you are using alpaca formatting lora_modules_to_save: - embed_tokens - lm_head dataset_prepared_path: val_set_size: 0.05 output_dir: ./lora-out sequence_len: 4096 # this can be tweaked for efficiency sample_packing: true pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: mtg-aurora-experiement # give this a name wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 2 # this can be tweaked for efficiency micro_batch_size: 1 # this can be tweaked for efficiency num_epochs: 1 # this can be experimented with optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: true group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: false # when this is true, inference quality is terrible s2_attention: warmup_steps: 10 # this can be tweaked for efficiency evals_per_epoch: 10 # this can be tweaked for efficiency eval_table_size: eval_table_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: "<|endoftext|>" eos_token: "<|endoftext|>" ```

# lora-out This model is a fine-tuned version of [aurora-m/aurora-m-v0.1](https://huggingface.co/aurora-m/aurora-m-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7934 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.2853 | 0.0 | 1 | 4.0866 | | 2.188 | 0.1 | 25 | 1.9751 | | 1.2702 | 0.21 | 50 | 1.2180 | | 1.0671 | 0.31 | 75 | 1.0151 | | 0.9542 | 0.41 | 100 | 0.9209 | | 0.9318 | 0.52 | 125 | 0.8680 | | 0.858 | 0.62 | 150 | 0.8284 | | 0.8247 | 0.73 | 175 | 0.8080 | | 0.8576 | 0.83 | 200 | 0.7966 | | 0.9026 | 0.93 | 225 | 0.7934 | ### Framework versions - PEFT 0.8.2.dev0 - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0