--- license: apache-2.0 language: - ja - en --- ## Description This model is a 10.2 billion parameter model that combines two sets of 24 layers each from [CALM2-7B-chat](https://huggingface.co/cyberagent/calm2-7b-chat) using slerp-merge. ## Chat Template ``` USER: {user_message1} ASSISTANT: {assistant_message1}<|endoftext|> USER: {user_message2} ASSISTANT: {assistant_message2}<|endoftext|> USER: {user_message3} ASSISTANT: {assistant_message3}<|endoftext|> ``` ## Tutorial ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("sudy-super/baku-10b-chat-v2") model = AutoModelForCausalLM.from_pretrained("sudy-super/baku-10b-chat-v2", device_map="auto", torch_dtype=torch.bfloat16) raw_prompt = "仕事の熱意を取り戻すためのアイデアを5つ挙げてください。" prompt = f"USER:{raw_prompt}\nASSISTANT:" token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") with torch.no_grad(): output_ids = model.generate( token_ids.to(model.device), max_new_tokens=100, do_sample=True, temperature=0.8, pad_token_id=tokenizer.pad_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id ) result = tokenizer.decode(output_ids.tolist()[0]) print(result) ```