File size: 25,344 Bytes
ac396ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 |
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
#
# Copyright (c) 2022, Tri Dao, [email protected].
# Licensed under the BSD 3-Clause License.
from dataclasses import dataclass, field
from typing import Any, Dict, Optional, Union, Tuple
import math
import torch
import torch.nn as nn
from einops import rearrange, repeat
from transformers import PretrainedConfig, PreTrainedModel
from transformers.activations import ACT2FN
from transformers.modeling_outputs import CausalLMOutputWithPast
from .configuration_moondream import PhiConfig
FusedDense = None
@dataclass
class InferenceParams:
max_seqlen: int
max_batch_size: int
seqlen_offset: int = 0
batch_size_offset: int = 0
key_value_memory_dict: Dict[str, Any] = field(default_factory=dict)
lengths_per_sample: torch.Tensor = None
class Embedding(nn.Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
self.wte = nn.Embedding(config.vocab_size, config.n_embd)
self.drop = nn.Dropout(config.embd_pdrop)
def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
return self.drop(self.wte(input_ids.view(-1, input_ids.size(-1))))
def _apply_rotary_emb(x, cos, sin):
seqlen, rotary_dim = x.size(1), cos.size(1) * 2
x_rot, x_pass = x[..., :rotary_dim], x[..., rotary_dim:]
x1, x2 = x_rot.chunk(2, dim=-1)
c, s = cos[:seqlen].unsqueeze(1), sin[:seqlen].unsqueeze(1)
x_rot = torch.cat([x1 * c - x2 * s, x1 * s + x2 * c], dim=-1)
return torch.cat([x_rot.to(x.dtype), x_pass], dim=-1)
def _apply_rotary_emb_kv(
kv: torch.FloatTensor, cos: torch.FloatTensor, sin: torch.FloatTensor
) -> torch.FloatTensor:
seqlen, rotary_dim = kv.shape[1], cos.shape[-1] * 2
k_rot = kv[:, :, 0, :, :rotary_dim].chunk(2, dim=-1)
k_pass = kv[:, :, 0, :, rotary_dim:]
c, s = cos[:seqlen].unsqueeze(1), sin[:seqlen].unsqueeze(1)
k_rot = torch.cat(
[k_rot[0] * c - k_rot[1] * s, k_rot[0] * s + k_rot[1] * c], dim=-1
)
return torch.cat(
[torch.cat([k_rot, k_pass], dim=-1).unsqueeze(2), kv[:, :, 1:2, :, :]], dim=2
)
def _apply_rotary_emb_qkv(
qkv: torch.FloatTensor, cos: torch.FloatTensor, sin: torch.FloatTensor
) -> torch.FloatTensor:
seqlen, rotary_dim = qkv.shape[1], cos.shape[1] * 2
c = cos[:seqlen].unsqueeze(1)
s = sin[:seqlen].unsqueeze(1)
qkv_rot = torch.stack(
[
torch.cat(
[
qkv[:, :, i, :, : rotary_dim // 2] * c
- qkv[:, :, i, :, rotary_dim // 2 : rotary_dim] * s,
qkv[:, :, i, :, : rotary_dim // 2] * s
+ qkv[:, :, i, :, rotary_dim // 2 : rotary_dim] * c,
],
dim=-1,
).to(qkv.dtype)
for i in range(2)
],
dim=2,
)
qkv_pass = qkv[:, :, :2, :, rotary_dim:].unsqueeze(2)
qkv_v = qkv[:, :, 2:3, :, :]
return torch.cat([qkv_rot, qkv_pass, qkv_v], dim=2)
class RotaryEmbedding(nn.Module):
# Enhanced Transformer with Rotary Position Embedding (https://arxiv.org/pdf/2104.09864.pdf)
def __init__(
self,
dim: int,
base: int = 10000,
scale_base: Optional[float] = None,
pos_idx_in_fp32: bool = True,
max_position_embeddings: int = 2048,
device: Optional[str] = None,
) -> None:
super().__init__()
# fp32 is preferred since the output of `torch.arange` can be quite large and bf16 would lose a lot of precision
self.dim, self.base, self.pos_idx_in_fp32, self.device = (
dim,
float(base),
pos_idx_in_fp32,
device,
)
self.max_position_embeddings = max_position_embeddings
if scale_base is not None:
raise NotImplementedError
# Generate and register the non-trainable buffers
self.register_buffer(
"inv_freq", self._compute_inv_freq(device), persistent=False
)
self.register_buffer(
"scale", self._calculate_scale(dim, scale_base, device), persistent=False
)
self._update_cos_sin_cache(
max_position_embeddings, device=device, dtype=torch.float32
)
def _calculate_scale(self, dim, scale_base, device):
return (
(
(
torch.arange(0, dim, 2, device=device, dtype=torch.float32)
+ 0.4 * dim
)
/ (1.4 * dim)
)
if scale_base is not None
else None
)
def _compute_inv_freq(self, device: Optional[str] = None) -> torch.FloatTensor:
return 1.0 / (
self.base
** (
torch.arange(0, self.dim, 2, device=device, dtype=torch.float32)
/ self.dim
)
)
def _update_cos_sin_cache(
self,
seqlen: int,
device: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
) -> None:
self._seq_len_cached = seqlen
t = torch.arange(
seqlen,
device=device,
dtype=torch.float32 if self.pos_idx_in_fp32 else self.inv_freq.dtype,
)
inv_freq = (
self._compute_inv_freq(device=device)
if self.pos_idx_in_fp32 and self.inv_freq.dtype != torch.float32
else self.inv_freq
)
freqs = torch.outer(t, inv_freq)
def apply_scale(freqs, scale, operator, dtype):
result = operator(freqs)
return (result / scale).to(dtype) if scale is not None else result.to(dtype)
if scale := self.scale:
power = (
torch.arange(seqlen, dtype=scale.dtype, device=scale.device)
- seqlen // 2
) / self.scale_base
scale = scale.to(device=power.device) ** power.unsqueeze(1)
self._cos_cached = apply_scale(
freqs, 1 / scale if scale is not None else None, torch.cos, dtype
)
self._sin_cached = apply_scale(
freqs, 1 / scale if scale is not None else None, torch.sin, dtype
)
if scale is not None:
self._cos_k_cached = apply_scale(freqs, scale, torch.cos, dtype)
self._sin_k_cached = apply_scale(freqs, scale, torch.sin, dtype)
def forward(
self,
qkv: torch.Tensor,
kv: Optional[torch.Tensor] = None,
seqlen_offset: int = 0,
) -> Tuple[torch.Tensor, torch.Tensor]:
should_update = (
self._seq_len_cached < qkv.shape[1] + seqlen_offset
or self._cos_cached.device != qkv.device
or self._cos_cached.dtype != qkv.dtype
or (self.training and self._cos_cached.is_inference())
)
if should_update:
self._update_cos_sin_cache(
qkv.shape[1] + seqlen_offset, device=qkv.device, dtype=qkv.dtype
)
offset_cos = self._cos_cached[seqlen_offset:]
offset_sin = self._sin_cached[seqlen_offset:]
if kv is None:
return _apply_rotary_emb_qkv(qkv, offset_cos, offset_sin)
else:
return _apply_rotary_emb(qkv, offset_cos, offset_sin), _apply_rotary_emb_kv(
kv, offset_cos, offset_sin
)
class MLP(nn.Module):
def __init__(
self,
config: PretrainedConfig,
n_inner: Optional[int] = None,
act_fn: Optional[str] = None,
) -> None:
super().__init__()
n_inner = n_inner or getattr(config, "n_inner", None) or 4 * config.n_embd
act_fn = act_fn or config.activation_function
self.fc1 = nn.Linear(config.n_embd, n_inner)
self.fc2 = nn.Linear(n_inner, config.n_embd)
self.act = ACT2FN[act_fn]
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
return self.fc2(self.act(self.fc1(hidden_states)))
# Flash Attention (https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py)
class SelfAttention(nn.Module):
def __init__(
self,
causal: bool = True,
softmax_scale: Optional[float] = None,
attention_dropout: float = 0.0,
):
super().__init__()
self.causal = causal
self.softmax_scale = softmax_scale
self.drop = nn.Dropout(attention_dropout)
@torch.autocast("cpu", enabled=False)
@torch.autocast("cuda", enabled=False)
def forward(
self,
qkv: torch.FloatTensor,
causal: Optional[bool] = None,
key_padding_mask: Optional[torch.BoolTensor] = None,
):
q, k, v = qkv.chunk(3, dim=-1)
scale = self.softmax_scale or 1.0 / q.size(-1) ** 0.5
scores = (
torch.einsum("bthd,bshd->bhts", q.to(torch.float32), k.to(torch.float32))
* scale
)
if causal or self.causal:
scores.triu_(1).fill_(-10000.0)
if key_padding_mask is not None:
scores.masked_fill_(key_padding_mask[:, None, None, :], -10000.0)
attn = self.drop(torch.softmax(scores, dim=-1).to(v.dtype))
return torch.einsum("bhts,bshd->bthd", attn, v)
# Flash Attention (https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py)
class CrossAttention(nn.Module):
def __init__(self, causal=True, softmax_scale=None, attention_dropout=0.0):
super().__init__()
self.causal = causal
self.softmax_scale = softmax_scale
self.drop = nn.Dropout(attention_dropout)
@torch.autocast("cpu", enabled=False)
@torch.autocast("cuda", enabled=False)
def forward(
self,
q: torch.FloatTensor,
kv: torch.FloatTensor,
causal: bool = None,
key_padding_mask: Optional[torch.BoolTensor] = None,
) -> torch.FloatTensor:
batch_size, seqlen_q = q.shape[0], q.shape[1]
seqlen_k = kv.shape[1]
if kv.shape[3] != q.shape[2]:
kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
k, v = kv.unbind(dim=2)
q = q.to(torch.float32)
k = k.to(torch.float32)
causal = self.causal if causal is None else causal
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
# Autocast is manually disabled to avoid `torch.einsum` performing the operation using float16, which might lead to overflow
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
if key_padding_mask is not None:
padding_mask = torch.full(
(batch_size, seqlen_k),
-10000.0,
dtype=scores.dtype,
device=scores.device,
)
padding_mask.masked_fill_(key_padding_mask, 0.0)
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
if causal:
rows = rearrange(
torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1"
)
cols = torch.arange(seqlen_k, device=k.device, dtype=torch.long)
causal_mask = cols > rows + seqlen_k - seqlen_q
scores = scores.masked_fill(causal_mask, -10000.0)
attention = torch.softmax(scores, dim=-1).to(v.dtype)
attention = self.drop(attention)
output = torch.einsum("bhts,bshd->bthd", attention, v)
return output
def _find_mha_dims(
config: PretrainedConfig,
n_head: Optional[int] = None,
n_head_kv: Optional[int] = None,
head_dim: Optional[int] = None,
) -> Tuple[int, int]:
if n_head is None and head_dim is None:
head_dim = config.n_embd // config.n_head
n_head = config.n_head
elif n_head is None or head_dim is None:
raise ValueError("`n_head` and `head_dim` must be both specified or `None`.")
if n_head_kv is None:
n_head_kv = getattr(config, "n_head_kv", None) or n_head
return n_head, n_head_kv, head_dim
def _update_kv_cache(
kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int
) -> torch.FloatTensor:
num_heads, head_dim = kv.shape[-2:]
layer_memory = inference_params.key_value_memory_dict.setdefault(
layer_idx,
torch.empty(
inference_params.max_batch_size,
inference_params.max_seqlen,
2,
num_heads,
head_dim,
dtype=kv.dtype,
device=kv.device,
),
)
batch_slice = slice(
inference_params.batch_size_offset,
inference_params.batch_size_offset + kv.shape[0],
)
seqlen_slice = slice(
inference_params.seqlen_offset, inference_params.seqlen_offset + kv.shape[1]
)
if seqlen_slice.stop >= inference_params.max_seqlen:
layer_memory = torch.cat((layer_memory, kv), dim=1)
inference_params.key_value_memory_dict[layer_idx] = layer_memory
layer_memory[batch_slice, seqlen_slice, ...] = kv
return layer_memory[batch_slice, : seqlen_slice.stop, ...]
# Multi-head attention layer with rotary embeddings
class MHA(nn.Module):
def __init__(
self,
config,
dtype=None,
device=None,
rotary_dim=None,
rotary_base=10000.0,
rotary_scale_base=None,
n_head=None,
n_head_kv=None,
head_dim=None,
bias=True,
causal=True,
softmax_scale=None,
layer_idx=None,
return_residual=False,
checkpointing=False,
):
super().__init__()
# Set rotary embedding if specified
self.rotary_dim = rotary_dim or getattr(config, "rotary_dim", 0)
if self.rotary_dim:
self.rotary_emb = RotaryEmbedding(
self.rotary_dim,
base=rotary_base,
scale_base=rotary_scale_base,
device=device,
max_position_embeddings=config.n_positions,
)
# Determine MHA dims from arguments or config
self.n_head, self.n_head_kv, self.head_dim = _find_mha_dims(
config, n_head, n_head_kv, head_dim
)
op_size = self.head_dim * (self.n_head + 2 * self.n_head_kv)
hidden_size = config.n_embd
# Choose Linear class based on config, FusedDense is optional
LinearClass = (
FusedDense if config.fused_dense and FusedDense is not None else nn.Linear
)
self.Wqkv = LinearClass(
hidden_size, op_size, bias=bias, device=device, dtype=dtype
)
self.out_proj = LinearClass(
hidden_size, hidden_size, bias=bias, device=device, dtype=dtype
)
# Initialize attention mechanisms
attn_kwargs = {
"causal": causal,
"softmax_scale": softmax_scale,
"attention_dropout": config.attn_pdrop,
}
self.inner_attn = SelfAttention(**attn_kwargs)
self.inner_cross_attn = CrossAttention(**attn_kwargs)
self.layer_idx = layer_idx
self.return_residual = return_residual
self.checkpointing = checkpointing
def _forward_self_attn(
self, x: torch.FloatTensor, key_padding_mask: Optional[torch.BoolTensor]
) -> torch.FloatTensor:
qkv = rearrange(
self.Wqkv(x), "... (three h d) -> ... three h d", three=3, d=self.head_dim
)
if self.rotary_dim > 0:
qkv = self.rotary_emb(qkv)
attn_func = (
torch.utils.checkpoint.checkpoint
if self.checkpointing
else lambda f, *args, **kwargs: f(*args, **kwargs)
)
return attn_func(self.inner_attn, qkv, key_padding_mask=key_padding_mask)
def _forward_cross_attn(
self,
x: torch.FloatTensor,
past_key_values: Optional[InferenceParams],
key_padding_mask: Optional[torch.BoolTensor],
) -> torch.FloatTensor:
qkv = self.Wqkv(x)
q, kv = (
qkv[..., : self.n_head * self.head_dim],
qkv[..., self.n_head * self.head_dim :],
)
q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
seqlen_offset = (
past_key_values.seqlen_offset if past_key_values is not None else 0
)
causal = None if seqlen_offset == 0 else False
if self.rotary_dim > 0:
q, kv = self.rotary_emb(q, kv=kv, seqlen_offset=seqlen_offset)
if past_key_values is not None:
kv = _update_kv_cache(kv, past_key_values, self.layer_idx)
attn_func = (
torch.utils.checkpoint.checkpoint
if self.checkpointing
else lambda fn, *args, **kwargs: fn(*args, **kwargs)
)
return attn_func(
self.inner_cross_attn,
q,
kv,
key_padding_mask=key_padding_mask,
causal=causal,
)
def forward(
self,
x: torch.FloatTensor,
past_key_values: Optional[InferenceParams] = None,
attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
attention_mask = attention_mask.bool() if attention_mask is not None else None
use_cross_attn = self.n_head != self.n_head_kv or past_key_values is not None
attn_output_function = (
self._forward_cross_attn if use_cross_attn else self._forward_self_attn
)
attn_output = (
attn_output_function(x, past_key_values, attention_mask)
if use_cross_attn
else attn_output_function(x, attention_mask)
)
output = self.out_proj(rearrange(attn_output, "... h d -> ... (h d)"))
return (output, x) if self.return_residual else output
# Parallel block. This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen).
class ParallelBlock(nn.Module):
def __init__(self, config: PretrainedConfig, block_idx: Optional[int] = None):
super().__init__()
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.resid_dropout = nn.Dropout(config.resid_pdrop)
self.block_idx = block_idx
self.mixer = MHA(config, layer_idx=block_idx)
self.mlp = MLP(config)
def forward(
self,
hidden_states: torch.FloatTensor,
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
attention_mask: Optional[torch.BoolTensor] = None,
) -> torch.FloatTensor:
residual = hidden_states
hidden_states = self.ln(hidden_states)
attn_outputs = self.mixer(
hidden_states,
past_key_values=past_key_values,
attention_mask=attention_mask,
)
if isinstance(attn_outputs, tuple):
attn_outputs = attn_outputs[0]
attn_outputs = self.resid_dropout(attn_outputs)
feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
return attn_outputs + feed_forward_hidden_states + residual
class CausalLMHead(nn.Module):
"""Causal Language Modeling head. Simplified version."""
def __init__(self, config):
super().__init__()
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.linear = nn.Linear(config.n_embd, config.vocab_size)
def forward(self, hidden_states):
return self.linear(self.ln(hidden_states)).to(torch.float32)
# Improving Language Understanding by Generative Pre-Training
# (https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf)
class CausalLMLoss(nn.Module):
def __init__(self, shift_labels: bool = True) -> None:
super().__init__()
self.shift_labels = shift_labels
self.loss_fct = nn.CrossEntropyLoss()
def forward(
self, logits: torch.FloatTensor, labels: torch.LongTensor
) -> torch.FloatTensor:
if self.shift_labels:
logits, labels = logits[..., :-1, :], labels[..., 1:]
return self.loss_fct(logits.reshape(-1, logits.size(-1)), labels.reshape(-1))
class PhiPreTrainedModel(PreTrainedModel):
config_class = PhiConfig
base_model_prefix = "transformer"
supports_gradient_checkpointing = False
_no_split_modules = ["ParallelBlock"]
def __init__(self, *inputs, **kwargs) -> None:
super().__init__(*inputs, **kwargs)
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor = None,
inputs_embeds: torch.FloatTensor = None,
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
**kwargs,
) -> Dict[str, Any]:
if input_ids is None and inputs_embeds is None:
raise ValueError(
"You have to specify either `input_ids` or `inputs_embeds`."
)
max_batch_size = (
inputs_embeds.shape[0] if inputs_embeds is not None else input_ids.shape[0]
)
seqlen_offset = (
inputs_embeds.shape[1] + input_ids.shape[1] - 2
if inputs_embeds is not None
else input_ids.shape[1] - 1
)
args = (
{"inputs_embeds": inputs_embeds}
if inputs_embeds is not None
else {"input_ids": input_ids}
)
if not isinstance(past_key_values, InferenceParams):
past_key_values = InferenceParams(
max_seqlen=self.config.n_positions,
max_batch_size=max_batch_size,
seqlen_offset=0,
batch_size_offset=0,
key_value_memory_dict={},
lengths_per_sample=None,
)
else:
past_key_values.seqlen_offset = seqlen_offset
args = {"input_ids": input_ids[:, -1].unsqueeze(-1)}
return {
**args,
"past_key_values": past_key_values,
"attention_mask": attention_mask,
}
class PhiModel(PhiPreTrainedModel):
_keys_to_ignore_on_load_missing = [""]
_keys_to_ignore_on_load_unexpected = [r"h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
def __init__(self, config: PhiConfig) -> None:
super().__init__(config)
self.embd = Embedding(config)
self.h = nn.ModuleList(
[ParallelBlock(config, block_idx=i) for i in range(config.n_layer)]
)
self.gradient_checkpointing = config.gradient_checkpointing
self.post_init()
def get_input_embeddings(self) -> nn.Embedding:
return self.embd.wte
def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
self.embd.wte = new_embeddings
def forward(
self,
input_ids: torch.LongTensor = None,
inputs_embeds: torch.FloatTensor = None,
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
attention_mask: Optional[torch.BoolTensor] = None,
) -> torch.FloatTensor:
if (input_ids is None) == (inputs_embeds is None):
raise ValueError("Specify exactly one of `input_ids` or `inputs_embeds`.")
hidden_states = self.embd(input_ids) if input_ids is not None else inputs_embeds
for layer in self.h:
func = layer.__call__ if self.gradient_checkpointing else layer
args = (hidden_states, past_key_values, attention_mask)
hidden_states = (
torch.utils.checkpoint.checkpoint(func, *args, use_reentrant=True)
if self.gradient_checkpointing
else func(*args)
)
return hidden_states
class PhiForCausalLM(PhiPreTrainedModel):
_keys_to_ignore_on_load_missing, _keys_to_ignore_on_load_unexpected = (
[""],
[r"transformer\.h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"],
)
def __init__(self, config: PhiConfig) -> None:
super().__init__(config)
self.transformer = PhiModel(config)
self.lm_head = CausalLMHead(config)
self.loss = CausalLMLoss()
self.post_init()
def get_output_embeddings(self) -> nn.Linear:
return self.lm_head.linear
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
self.lm_head.linear = new_embeddings
def forward(
self,
input_ids: torch.LongTensor = None,
inputs_embeds: torch.FloatTensor = None,
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
attention_mask: Optional[torch.BoolTensor] = None,
labels: Optional[torch.LongTensor] = None,
**kwargs,
) -> CausalLMOutputWithPast:
hidden_states = self.transformer(
input_ids=input_ids,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
attention_mask=attention_mask,
)
lm_logits = self.lm_head(hidden_states)
loss = self.loss(lm_logits, labels) if labels is not None else None
return CausalLMOutputWithPast(
loss=loss, logits=lm_logits, past_key_values=past_key_values
)
|