File size: 25,344 Bytes
ac396ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
#
# Copyright (c) 2022, Tri Dao, [email protected].
# Licensed under the BSD 3-Clause License.

from dataclasses import dataclass, field
from typing import Any, Dict, Optional, Union, Tuple

import math
import torch
import torch.nn as nn
from einops import rearrange, repeat
from transformers import PretrainedConfig, PreTrainedModel
from transformers.activations import ACT2FN
from transformers.modeling_outputs import CausalLMOutputWithPast

from .configuration_moondream import PhiConfig

FusedDense = None


@dataclass
class InferenceParams:
    max_seqlen: int
    max_batch_size: int
    seqlen_offset: int = 0
    batch_size_offset: int = 0
    key_value_memory_dict: Dict[str, Any] = field(default_factory=dict)
    lengths_per_sample: torch.Tensor = None


class Embedding(nn.Module):
    def __init__(self, config: PretrainedConfig):
        super().__init__()
        self.wte = nn.Embedding(config.vocab_size, config.n_embd)
        self.drop = nn.Dropout(config.embd_pdrop)

    def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
        return self.drop(self.wte(input_ids.view(-1, input_ids.size(-1))))


def _apply_rotary_emb(x, cos, sin):
    seqlen, rotary_dim = x.size(1), cos.size(1) * 2
    x_rot, x_pass = x[..., :rotary_dim], x[..., rotary_dim:]
    x1, x2 = x_rot.chunk(2, dim=-1)
    c, s = cos[:seqlen].unsqueeze(1), sin[:seqlen].unsqueeze(1)
    x_rot = torch.cat([x1 * c - x2 * s, x1 * s + x2 * c], dim=-1)
    return torch.cat([x_rot.to(x.dtype), x_pass], dim=-1)


def _apply_rotary_emb_kv(
    kv: torch.FloatTensor, cos: torch.FloatTensor, sin: torch.FloatTensor
) -> torch.FloatTensor:
    seqlen, rotary_dim = kv.shape[1], cos.shape[-1] * 2
    k_rot = kv[:, :, 0, :, :rotary_dim].chunk(2, dim=-1)
    k_pass = kv[:, :, 0, :, rotary_dim:]
    c, s = cos[:seqlen].unsqueeze(1), sin[:seqlen].unsqueeze(1)
    k_rot = torch.cat(
        [k_rot[0] * c - k_rot[1] * s, k_rot[0] * s + k_rot[1] * c], dim=-1
    )
    return torch.cat(
        [torch.cat([k_rot, k_pass], dim=-1).unsqueeze(2), kv[:, :, 1:2, :, :]], dim=2
    )


def _apply_rotary_emb_qkv(
    qkv: torch.FloatTensor, cos: torch.FloatTensor, sin: torch.FloatTensor
) -> torch.FloatTensor:
    seqlen, rotary_dim = qkv.shape[1], cos.shape[1] * 2

    c = cos[:seqlen].unsqueeze(1)
    s = sin[:seqlen].unsqueeze(1)

    qkv_rot = torch.stack(
        [
            torch.cat(
                [
                    qkv[:, :, i, :, : rotary_dim // 2] * c
                    - qkv[:, :, i, :, rotary_dim // 2 : rotary_dim] * s,
                    qkv[:, :, i, :, : rotary_dim // 2] * s
                    + qkv[:, :, i, :, rotary_dim // 2 : rotary_dim] * c,
                ],
                dim=-1,
            ).to(qkv.dtype)
            for i in range(2)
        ],
        dim=2,
    )

    qkv_pass = qkv[:, :, :2, :, rotary_dim:].unsqueeze(2)
    qkv_v = qkv[:, :, 2:3, :, :]
    return torch.cat([qkv_rot, qkv_pass, qkv_v], dim=2)


class RotaryEmbedding(nn.Module):
    # Enhanced Transformer with Rotary Position Embedding (https://arxiv.org/pdf/2104.09864.pdf)
    def __init__(
        self,
        dim: int,
        base: int = 10000,
        scale_base: Optional[float] = None,
        pos_idx_in_fp32: bool = True,
        max_position_embeddings: int = 2048,
        device: Optional[str] = None,
    ) -> None:
        super().__init__()
        # fp32 is preferred since the output of `torch.arange` can be quite large and bf16 would lose a lot of precision
        self.dim, self.base, self.pos_idx_in_fp32, self.device = (
            dim,
            float(base),
            pos_idx_in_fp32,
            device,
        )
        self.max_position_embeddings = max_position_embeddings
        if scale_base is not None:
            raise NotImplementedError

        # Generate and register the non-trainable buffers
        self.register_buffer(
            "inv_freq", self._compute_inv_freq(device), persistent=False
        )
        self.register_buffer(
            "scale", self._calculate_scale(dim, scale_base, device), persistent=False
        )
        self._update_cos_sin_cache(
            max_position_embeddings, device=device, dtype=torch.float32
        )

    def _calculate_scale(self, dim, scale_base, device):
        return (
            (
                (
                    torch.arange(0, dim, 2, device=device, dtype=torch.float32)
                    + 0.4 * dim
                )
                / (1.4 * dim)
            )
            if scale_base is not None
            else None
        )

    def _compute_inv_freq(self, device: Optional[str] = None) -> torch.FloatTensor:
        return 1.0 / (
            self.base
            ** (
                torch.arange(0, self.dim, 2, device=device, dtype=torch.float32)
                / self.dim
            )
        )

    def _update_cos_sin_cache(
        self,
        seqlen: int,
        device: Optional[str] = None,
        dtype: Optional[torch.dtype] = None,
    ) -> None:
        self._seq_len_cached = seqlen
        t = torch.arange(
            seqlen,
            device=device,
            dtype=torch.float32 if self.pos_idx_in_fp32 else self.inv_freq.dtype,
        )
        inv_freq = (
            self._compute_inv_freq(device=device)
            if self.pos_idx_in_fp32 and self.inv_freq.dtype != torch.float32
            else self.inv_freq
        )

        freqs = torch.outer(t, inv_freq)

        def apply_scale(freqs, scale, operator, dtype):
            result = operator(freqs)
            return (result / scale).to(dtype) if scale is not None else result.to(dtype)

        if scale := self.scale:
            power = (
                torch.arange(seqlen, dtype=scale.dtype, device=scale.device)
                - seqlen // 2
            ) / self.scale_base
            scale = scale.to(device=power.device) ** power.unsqueeze(1)

        self._cos_cached = apply_scale(
            freqs, 1 / scale if scale is not None else None, torch.cos, dtype
        )
        self._sin_cached = apply_scale(
            freqs, 1 / scale if scale is not None else None, torch.sin, dtype
        )
        if scale is not None:
            self._cos_k_cached = apply_scale(freqs, scale, torch.cos, dtype)
            self._sin_k_cached = apply_scale(freqs, scale, torch.sin, dtype)

    def forward(
        self,
        qkv: torch.Tensor,
        kv: Optional[torch.Tensor] = None,
        seqlen_offset: int = 0,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        should_update = (
            self._seq_len_cached < qkv.shape[1] + seqlen_offset
            or self._cos_cached.device != qkv.device
            or self._cos_cached.dtype != qkv.dtype
            or (self.training and self._cos_cached.is_inference())
        )

        if should_update:
            self._update_cos_sin_cache(
                qkv.shape[1] + seqlen_offset, device=qkv.device, dtype=qkv.dtype
            )

        offset_cos = self._cos_cached[seqlen_offset:]
        offset_sin = self._sin_cached[seqlen_offset:]

        if kv is None:
            return _apply_rotary_emb_qkv(qkv, offset_cos, offset_sin)
        else:
            return _apply_rotary_emb(qkv, offset_cos, offset_sin), _apply_rotary_emb_kv(
                kv, offset_cos, offset_sin
            )


class MLP(nn.Module):
    def __init__(
        self,
        config: PretrainedConfig,
        n_inner: Optional[int] = None,
        act_fn: Optional[str] = None,
    ) -> None:
        super().__init__()
        n_inner = n_inner or getattr(config, "n_inner", None) or 4 * config.n_embd
        act_fn = act_fn or config.activation_function

        self.fc1 = nn.Linear(config.n_embd, n_inner)
        self.fc2 = nn.Linear(n_inner, config.n_embd)
        self.act = ACT2FN[act_fn]

    def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
        return self.fc2(self.act(self.fc1(hidden_states)))


# Flash Attention (https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py)
class SelfAttention(nn.Module):
    def __init__(
        self,
        causal: bool = True,
        softmax_scale: Optional[float] = None,
        attention_dropout: float = 0.0,
    ):
        super().__init__()
        self.causal = causal
        self.softmax_scale = softmax_scale
        self.drop = nn.Dropout(attention_dropout)

    @torch.autocast("cpu", enabled=False)
    @torch.autocast("cuda", enabled=False)
    def forward(
        self,
        qkv: torch.FloatTensor,
        causal: Optional[bool] = None,
        key_padding_mask: Optional[torch.BoolTensor] = None,
    ):
        q, k, v = qkv.chunk(3, dim=-1)
        scale = self.softmax_scale or 1.0 / q.size(-1) ** 0.5

        scores = (
            torch.einsum("bthd,bshd->bhts", q.to(torch.float32), k.to(torch.float32))
            * scale
        )
        if causal or self.causal:
            scores.triu_(1).fill_(-10000.0)
        if key_padding_mask is not None:
            scores.masked_fill_(key_padding_mask[:, None, None, :], -10000.0)

        attn = self.drop(torch.softmax(scores, dim=-1).to(v.dtype))
        return torch.einsum("bhts,bshd->bthd", attn, v)


# Flash Attention (https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py)
class CrossAttention(nn.Module):
    def __init__(self, causal=True, softmax_scale=None, attention_dropout=0.0):
        super().__init__()
        self.causal = causal
        self.softmax_scale = softmax_scale
        self.drop = nn.Dropout(attention_dropout)

    @torch.autocast("cpu", enabled=False)
    @torch.autocast("cuda", enabled=False)
    def forward(
        self,
        q: torch.FloatTensor,
        kv: torch.FloatTensor,
        causal: bool = None,
        key_padding_mask: Optional[torch.BoolTensor] = None,
    ) -> torch.FloatTensor:
        batch_size, seqlen_q = q.shape[0], q.shape[1]
        seqlen_k = kv.shape[1]

        if kv.shape[3] != q.shape[2]:
            kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
        k, v = kv.unbind(dim=2)

        q = q.to(torch.float32)
        k = k.to(torch.float32)

        causal = self.causal if causal is None else causal
        softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])

        # Autocast is manually disabled to avoid `torch.einsum` performing the operation using float16, which might lead to overflow
        scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)

        if key_padding_mask is not None:
            padding_mask = torch.full(
                (batch_size, seqlen_k),
                -10000.0,
                dtype=scores.dtype,
                device=scores.device,
            )
            padding_mask.masked_fill_(key_padding_mask, 0.0)
            scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")

        if causal:
            rows = rearrange(
                torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1"
            )
            cols = torch.arange(seqlen_k, device=k.device, dtype=torch.long)
            causal_mask = cols > rows + seqlen_k - seqlen_q
            scores = scores.masked_fill(causal_mask, -10000.0)

        attention = torch.softmax(scores, dim=-1).to(v.dtype)
        attention = self.drop(attention)
        output = torch.einsum("bhts,bshd->bthd", attention, v)

        return output


def _find_mha_dims(
    config: PretrainedConfig,
    n_head: Optional[int] = None,
    n_head_kv: Optional[int] = None,
    head_dim: Optional[int] = None,
) -> Tuple[int, int]:
    if n_head is None and head_dim is None:
        head_dim = config.n_embd // config.n_head
        n_head = config.n_head
    elif n_head is None or head_dim is None:
        raise ValueError("`n_head` and `head_dim` must be both specified or `None`.")
    if n_head_kv is None:
        n_head_kv = getattr(config, "n_head_kv", None) or n_head
    return n_head, n_head_kv, head_dim


def _update_kv_cache(
    kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int
) -> torch.FloatTensor:
    num_heads, head_dim = kv.shape[-2:]
    layer_memory = inference_params.key_value_memory_dict.setdefault(
        layer_idx,
        torch.empty(
            inference_params.max_batch_size,
            inference_params.max_seqlen,
            2,
            num_heads,
            head_dim,
            dtype=kv.dtype,
            device=kv.device,
        ),
    )

    batch_slice = slice(
        inference_params.batch_size_offset,
        inference_params.batch_size_offset + kv.shape[0],
    )
    seqlen_slice = slice(
        inference_params.seqlen_offset, inference_params.seqlen_offset + kv.shape[1]
    )

    if seqlen_slice.stop >= inference_params.max_seqlen:
        layer_memory = torch.cat((layer_memory, kv), dim=1)
        inference_params.key_value_memory_dict[layer_idx] = layer_memory

    layer_memory[batch_slice, seqlen_slice, ...] = kv
    return layer_memory[batch_slice, : seqlen_slice.stop, ...]


# Multi-head attention layer with rotary embeddings
class MHA(nn.Module):
    def __init__(
        self,
        config,
        dtype=None,
        device=None,
        rotary_dim=None,
        rotary_base=10000.0,
        rotary_scale_base=None,
        n_head=None,
        n_head_kv=None,
        head_dim=None,
        bias=True,
        causal=True,
        softmax_scale=None,
        layer_idx=None,
        return_residual=False,
        checkpointing=False,
    ):
        super().__init__()

        # Set rotary embedding if specified
        self.rotary_dim = rotary_dim or getattr(config, "rotary_dim", 0)
        if self.rotary_dim:
            self.rotary_emb = RotaryEmbedding(
                self.rotary_dim,
                base=rotary_base,
                scale_base=rotary_scale_base,
                device=device,
                max_position_embeddings=config.n_positions,
            )

        # Determine MHA dims from arguments or config
        self.n_head, self.n_head_kv, self.head_dim = _find_mha_dims(
            config, n_head, n_head_kv, head_dim
        )
        op_size = self.head_dim * (self.n_head + 2 * self.n_head_kv)
        hidden_size = config.n_embd

        # Choose Linear class based on config, FusedDense is optional
        LinearClass = (
            FusedDense if config.fused_dense and FusedDense is not None else nn.Linear
        )
        self.Wqkv = LinearClass(
            hidden_size, op_size, bias=bias, device=device, dtype=dtype
        )
        self.out_proj = LinearClass(
            hidden_size, hidden_size, bias=bias, device=device, dtype=dtype
        )

        # Initialize attention mechanisms
        attn_kwargs = {
            "causal": causal,
            "softmax_scale": softmax_scale,
            "attention_dropout": config.attn_pdrop,
        }
        self.inner_attn = SelfAttention(**attn_kwargs)
        self.inner_cross_attn = CrossAttention(**attn_kwargs)

        self.layer_idx = layer_idx
        self.return_residual = return_residual
        self.checkpointing = checkpointing

    def _forward_self_attn(
        self, x: torch.FloatTensor, key_padding_mask: Optional[torch.BoolTensor]
    ) -> torch.FloatTensor:
        qkv = rearrange(
            self.Wqkv(x), "... (three h d) -> ... three h d", three=3, d=self.head_dim
        )
        if self.rotary_dim > 0:
            qkv = self.rotary_emb(qkv)
        attn_func = (
            torch.utils.checkpoint.checkpoint
            if self.checkpointing
            else lambda f, *args, **kwargs: f(*args, **kwargs)
        )
        return attn_func(self.inner_attn, qkv, key_padding_mask=key_padding_mask)

    def _forward_cross_attn(
        self,
        x: torch.FloatTensor,
        past_key_values: Optional[InferenceParams],
        key_padding_mask: Optional[torch.BoolTensor],
    ) -> torch.FloatTensor:
        qkv = self.Wqkv(x)
        q, kv = (
            qkv[..., : self.n_head * self.head_dim],
            qkv[..., self.n_head * self.head_dim :],
        )
        q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
        kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)

        seqlen_offset = (
            past_key_values.seqlen_offset if past_key_values is not None else 0
        )
        causal = None if seqlen_offset == 0 else False
        if self.rotary_dim > 0:
            q, kv = self.rotary_emb(q, kv=kv, seqlen_offset=seqlen_offset)

        if past_key_values is not None:
            kv = _update_kv_cache(kv, past_key_values, self.layer_idx)

        attn_func = (
            torch.utils.checkpoint.checkpoint
            if self.checkpointing
            else lambda fn, *args, **kwargs: fn(*args, **kwargs)
        )

        return attn_func(
            self.inner_cross_attn,
            q,
            kv,
            key_padding_mask=key_padding_mask,
            causal=causal,
        )

    def forward(
        self,
        x: torch.FloatTensor,
        past_key_values: Optional[InferenceParams] = None,
        attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
    ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
        attention_mask = attention_mask.bool() if attention_mask is not None else None
        use_cross_attn = self.n_head != self.n_head_kv or past_key_values is not None
        attn_output_function = (
            self._forward_cross_attn if use_cross_attn else self._forward_self_attn
        )
        attn_output = (
            attn_output_function(x, past_key_values, attention_mask)
            if use_cross_attn
            else attn_output_function(x, attention_mask)
        )
        output = self.out_proj(rearrange(attn_output, "... h d -> ... (h d)"))
        return (output, x) if self.return_residual else output


# Parallel block. This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen).
class ParallelBlock(nn.Module):
    def __init__(self, config: PretrainedConfig, block_idx: Optional[int] = None):
        super().__init__()
        self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
        self.block_idx = block_idx
        self.mixer = MHA(config, layer_idx=block_idx)
        self.mlp = MLP(config)

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
        attention_mask: Optional[torch.BoolTensor] = None,
    ) -> torch.FloatTensor:
        residual = hidden_states
        hidden_states = self.ln(hidden_states)

        attn_outputs = self.mixer(
            hidden_states,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
        )
        if isinstance(attn_outputs, tuple):
            attn_outputs = attn_outputs[0]

        attn_outputs = self.resid_dropout(attn_outputs)
        feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
        return attn_outputs + feed_forward_hidden_states + residual


class CausalLMHead(nn.Module):
    """Causal Language Modeling head. Simplified version."""

    def __init__(self, config):
        super().__init__()
        self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
        self.linear = nn.Linear(config.n_embd, config.vocab_size)

    def forward(self, hidden_states):
        return self.linear(self.ln(hidden_states)).to(torch.float32)


# Improving Language Understanding by Generative Pre-Training
# (https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf)
class CausalLMLoss(nn.Module):
    def __init__(self, shift_labels: bool = True) -> None:
        super().__init__()
        self.shift_labels = shift_labels
        self.loss_fct = nn.CrossEntropyLoss()

    def forward(
        self, logits: torch.FloatTensor, labels: torch.LongTensor
    ) -> torch.FloatTensor:
        if self.shift_labels:
            logits, labels = logits[..., :-1, :], labels[..., 1:]
        return self.loss_fct(logits.reshape(-1, logits.size(-1)), labels.reshape(-1))


class PhiPreTrainedModel(PreTrainedModel):
    config_class = PhiConfig
    base_model_prefix = "transformer"
    supports_gradient_checkpointing = False
    _no_split_modules = ["ParallelBlock"]

    def __init__(self, *inputs, **kwargs) -> None:
        super().__init__(*inputs, **kwargs)

    def prepare_inputs_for_generation(
        self,
        input_ids: torch.LongTensor = None,
        inputs_embeds: torch.FloatTensor = None,
        past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
        attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
        **kwargs,
    ) -> Dict[str, Any]:
        if input_ids is None and inputs_embeds is None:
            raise ValueError(
                "You have to specify either `input_ids` or `inputs_embeds`."
            )

        max_batch_size = (
            inputs_embeds.shape[0] if inputs_embeds is not None else input_ids.shape[0]
        )
        seqlen_offset = (
            inputs_embeds.shape[1] + input_ids.shape[1] - 2
            if inputs_embeds is not None
            else input_ids.shape[1] - 1
        )

        args = (
            {"inputs_embeds": inputs_embeds}
            if inputs_embeds is not None
            else {"input_ids": input_ids}
        )

        if not isinstance(past_key_values, InferenceParams):
            past_key_values = InferenceParams(
                max_seqlen=self.config.n_positions,
                max_batch_size=max_batch_size,
                seqlen_offset=0,
                batch_size_offset=0,
                key_value_memory_dict={},
                lengths_per_sample=None,
            )
        else:
            past_key_values.seqlen_offset = seqlen_offset
            args = {"input_ids": input_ids[:, -1].unsqueeze(-1)}

        return {
            **args,
            "past_key_values": past_key_values,
            "attention_mask": attention_mask,
        }


class PhiModel(PhiPreTrainedModel):
    _keys_to_ignore_on_load_missing = [""]
    _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]

    def __init__(self, config: PhiConfig) -> None:
        super().__init__(config)
        self.embd = Embedding(config)
        self.h = nn.ModuleList(
            [ParallelBlock(config, block_idx=i) for i in range(config.n_layer)]
        )
        self.gradient_checkpointing = config.gradient_checkpointing
        self.post_init()

    def get_input_embeddings(self) -> nn.Embedding:
        return self.embd.wte

    def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
        self.embd.wte = new_embeddings

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        inputs_embeds: torch.FloatTensor = None,
        past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
        attention_mask: Optional[torch.BoolTensor] = None,
    ) -> torch.FloatTensor:
        if (input_ids is None) == (inputs_embeds is None):
            raise ValueError("Specify exactly one of `input_ids` or `inputs_embeds`.")
        hidden_states = self.embd(input_ids) if input_ids is not None else inputs_embeds

        for layer in self.h:
            func = layer.__call__ if self.gradient_checkpointing else layer
            args = (hidden_states, past_key_values, attention_mask)
            hidden_states = (
                torch.utils.checkpoint.checkpoint(func, *args, use_reentrant=True)
                if self.gradient_checkpointing
                else func(*args)
            )

        return hidden_states


class PhiForCausalLM(PhiPreTrainedModel):
    _keys_to_ignore_on_load_missing, _keys_to_ignore_on_load_unexpected = (
        [""],
        [r"transformer\.h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"],
    )

    def __init__(self, config: PhiConfig) -> None:
        super().__init__(config)
        self.transformer = PhiModel(config)
        self.lm_head = CausalLMHead(config)
        self.loss = CausalLMLoss()
        self.post_init()

    def get_output_embeddings(self) -> nn.Linear:
        return self.lm_head.linear

    def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
        self.lm_head.linear = new_embeddings

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        inputs_embeds: torch.FloatTensor = None,
        past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
        attention_mask: Optional[torch.BoolTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        **kwargs,
    ) -> CausalLMOutputWithPast:
        hidden_states = self.transformer(
            input_ids=input_ids,
            inputs_embeds=inputs_embeds,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
        )
        lm_logits = self.lm_head(hidden_states)
        loss = self.loss(lm_logits, labels) if labels is not None else None

        return CausalLMOutputWithPast(
            loss=loss, logits=lm_logits, past_key_values=past_key_values
        )