vikhyatk-moondream1.1old / moondream.py
sujitvasanth's picture
Duplicate from vikhyatk/moondream1
ac396ab verified
raw
history blame
3.24 kB
import torch
from torch import nn
from .vision_encoder import VisionEncoder
from .configuration_moondream import MoondreamConfig
from transformers import PreTrainedModel
import re
from .modeling_phi import PhiForCausalLM
from .configuration_moondream import PhiConfig
class Moondream(PreTrainedModel):
config_class = MoondreamConfig
def __init__(self, config):
super().__init__(config)
self.vision_encoder = VisionEncoder()
if type(config.phi_config) == dict:
phi_config = PhiConfig(**config.phi_config)
else:
phi_config = config.phi_config
self.text_model = PhiForCausalLM(phi_config)
@property
def device(self):
return self.text_model.device
def encode_image(self, image):
return self.vision_encoder(image)
def input_embeds(self, prompt, image_embeds, tokenizer):
def _tokenize(txt):
return tokenizer(
txt, return_tensors="pt", add_special_tokens=False
).input_ids.to(self.device)
text_emb = self.text_model.get_input_embeddings()
# Add BOS token
embeds = []
embeds.append(
text_emb((torch.tensor([[tokenizer.bos_token_id]], device=self.device)))
)
if "<image>" not in prompt:
embeds.append(text_emb(_tokenize(prompt)))
else:
assert prompt.count("<image>") == 1
before, after = prompt.split("<image>")
embeds.append(text_emb(_tokenize(f"{before}<image>")))
embeds.append(image_embeds.to(self.device))
embeds.append(text_emb(_tokenize(f"</image>{after}")))
return torch.cat(embeds, dim=1)
def generate(
self,
image_embeds,
prompt,
tokenizer,
eos_text="<END>",
max_new_tokens=128,
**kwargs,
):
eos_tokens = tokenizer(eos_text, add_special_tokens=False)[0].ids
generate_config = {
"eos_token_id": eos_tokens,
"bos_token_id": tokenizer.bos_token_id,
"pad_token_id": tokenizer.eos_token_id,
"max_new_tokens": max_new_tokens,
**kwargs,
}
with torch.no_grad():
inputs_embeds = self.input_embeds(prompt, image_embeds, tokenizer)
output_ids = self.text_model.generate(
inputs_embeds=inputs_embeds, **generate_config
)
return tokenizer.batch_decode(output_ids, skip_special_tokens=True)
def answer_question(
self,
image_embeds,
question,
tokenizer,
chat_history="",
result_queue=None,
**kwargs,
):
prompt = f"<image>\n\n{chat_history}Question: {question}\n\nAnswer: "
answer = self.generate(
image_embeds,
prompt,
eos_text="<END>",
tokenizer=tokenizer,
max_new_tokens=256,
**kwargs,
)[0]
cleaned_answer = re.sub("<$", "", re.sub("END$", "", answer)).strip()
# Use the result_queue to pass the result if it is provided
if result_queue:
result_queue.put(cleaned_answer)
else:
return cleaned_answer