--- library_name: transformers license: apache-2.0 base_model: facebook/hubert-large-ls960-ft tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: hubert-large-ls960-ft-lg-CV-v1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: lg split: None args: lg metrics: - name: Wer type: wer value: 0.20413735167489236 --- # hubert-large-ls960-ft-lg-CV-v1 This model is a fine-tuned version of [facebook/hubert-large-ls960-ft](https://huggingface.co/facebook/hubert-large-ls960-ft) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.6251 - Wer: 0.2041 - Cer: 0.0609 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:------:|:---------------:|:------:|:------:| | 0.5741 | 1.0 | 4442 | 0.4573 | 0.4271 | 0.1144 | | 0.3189 | 2.0 | 8884 | 0.3821 | 0.3444 | 0.0932 | | 0.2692 | 3.0 | 13326 | 0.3881 | 0.3310 | 0.0912 | | 0.2405 | 4.0 | 17768 | 0.3453 | 0.3136 | 0.0854 | | 0.2191 | 5.0 | 22210 | 0.3476 | 0.2931 | 0.0823 | | 0.2039 | 6.0 | 26652 | 0.3841 | 0.2880 | 0.0825 | | 0.1913 | 7.0 | 31094 | 0.3532 | 0.2869 | 0.0798 | | 0.18 | 8.0 | 35536 | 0.3727 | 0.2849 | 0.0823 | | 0.1708 | 9.0 | 39978 | 0.3410 | 0.2773 | 0.0785 | | 0.1624 | 10.0 | 44420 | 0.3604 | 0.2705 | 0.0794 | | 0.1552 | 11.0 | 48862 | 0.3589 | 0.2661 | 0.0765 | | 0.1485 | 12.0 | 53304 | 0.3614 | 0.2687 | 0.0770 | | 0.1418 | 13.0 | 57746 | 0.3500 | 0.2637 | 0.0762 | | 0.1358 | 14.0 | 62188 | 0.3713 | 0.2628 | 0.0766 | | 0.131 | 15.0 | 66630 | 0.3908 | 0.2603 | 0.0758 | | 0.1255 | 16.0 | 71072 | 0.4089 | 0.2608 | 0.0758 | | 0.1205 | 17.0 | 75514 | 0.3848 | 0.2595 | 0.0742 | | 0.1162 | 18.0 | 79956 | 0.3554 | 0.2594 | 0.0739 | | 0.1125 | 19.0 | 84398 | 0.3461 | 0.2593 | 0.0742 | | 0.1073 | 20.0 | 88840 | 0.3663 | 0.2545 | 0.0729 | | 0.1039 | 21.0 | 93282 | 0.4556 | 0.2578 | 0.0743 | | 0.1 | 22.0 | 97724 | 0.4258 | 0.2504 | 0.0724 | | 0.0965 | 23.0 | 102166 | 0.4246 | 0.2545 | 0.0754 | | 0.0931 | 24.0 | 106608 | 0.4570 | 0.2603 | 0.0757 | | 0.0894 | 25.0 | 111050 | 0.4039 | 0.2488 | 0.0732 | | 0.0865 | 26.0 | 115492 | 0.4119 | 0.2510 | 0.0720 | | 0.083 | 27.0 | 119934 | 0.4227 | 0.2454 | 0.0716 | | 0.0805 | 28.0 | 124376 | 0.4424 | 0.2541 | 0.0728 | | 0.0777 | 29.0 | 128818 | 0.4061 | 0.2457 | 0.0709 | | 0.0762 | 30.0 | 133260 | 0.4114 | 0.2450 | 0.0704 | | 0.0724 | 31.0 | 137702 | 0.4599 | 0.2516 | 0.0719 | | 0.0711 | 32.0 | 142144 | 0.4311 | 0.2466 | 0.0714 | | 0.069 | 33.0 | 146586 | 0.4517 | 0.2482 | 0.0717 | | 0.0673 | 34.0 | 151028 | 0.4728 | 0.2467 | 0.0712 | | 0.0655 | 35.0 | 155470 | 0.4542 | 0.2437 | 0.0713 | | 0.0634 | 36.0 | 159912 | 0.4546 | 0.2480 | 0.0713 | | 0.0612 | 37.0 | 164354 | 0.4852 | 0.2479 | 0.0718 | | 0.0607 | 38.0 | 168796 | 0.4892 | 0.2433 | 0.0705 | | 0.0585 | 39.0 | 173238 | 0.4686 | 0.2416 | 0.0702 | | 0.0573 | 40.0 | 177680 | 0.4725 | 0.2412 | 0.0710 | | 0.0556 | 41.0 | 182122 | 0.4737 | 0.2385 | 0.0696 | | 0.0548 | 42.0 | 186564 | 0.4964 | 0.2448 | 0.0704 | | 0.0527 | 43.0 | 191006 | 0.5236 | 0.2429 | 0.0706 | | 0.052 | 44.0 | 195448 | 0.5130 | 0.2415 | 0.0714 | | 0.0503 | 45.0 | 199890 | 0.4936 | 0.2375 | 0.0688 | | 0.0496 | 46.0 | 204332 | 0.5120 | 0.2336 | 0.0680 | | 0.048 | 47.0 | 208774 | 0.4964 | 0.2362 | 0.0694 | | 0.0473 | 48.0 | 213216 | 0.5200 | 0.2372 | 0.0687 | | 0.0465 | 49.0 | 217658 | 0.5433 | 0.2424 | 0.0708 | | 0.0447 | 50.0 | 222100 | 0.5008 | 0.2335 | 0.0680 | | 0.0444 | 51.0 | 226542 | 0.5024 | 0.2247 | 0.0668 | | 0.0431 | 52.0 | 230984 | 0.5003 | 0.2307 | 0.0669 | | 0.0423 | 53.0 | 235426 | 0.4892 | 0.2331 | 0.0676 | | 0.0403 | 54.0 | 239868 | 0.5495 | 0.2316 | 0.0679 | | 0.0406 | 55.0 | 244310 | 0.5193 | 0.2278 | 0.0661 | | 0.0391 | 56.0 | 248752 | 0.5961 | 0.2331 | 0.0687 | | 0.0389 | 57.0 | 253194 | 0.5227 | 0.2297 | 0.0667 | | 0.0379 | 58.0 | 257636 | 0.5506 | 0.2295 | 0.0672 | | 0.0366 | 59.0 | 262078 | 0.5725 | 0.2231 | 0.0673 | | 0.0357 | 60.0 | 266520 | 0.5493 | 0.2280 | 0.0662 | | 0.0357 | 61.0 | 270962 | 0.5355 | 0.2269 | 0.0656 | | 0.035 | 62.0 | 275404 | 0.5430 | 0.2226 | 0.0653 | | 0.0343 | 63.0 | 279846 | 0.5375 | 0.2211 | 0.0644 | | 0.0334 | 64.0 | 284288 | 0.5769 | 0.2248 | 0.0668 | | 0.0333 | 65.0 | 288730 | 0.5763 | 0.2183 | 0.0642 | | 0.0322 | 66.0 | 293172 | 0.5787 | 0.2190 | 0.0653 | | 0.0314 | 67.0 | 297614 | 0.5564 | 0.2207 | 0.0642 | | 0.0305 | 68.0 | 302056 | 0.5813 | 0.2208 | 0.0666 | | 0.03 | 69.0 | 306498 | 0.5837 | 0.2217 | 0.0647 | | 0.0292 | 70.0 | 310940 | 0.5723 | 0.2238 | 0.0649 | | 0.0284 | 71.0 | 315382 | 0.5503 | 0.2218 | 0.0645 | | 0.0285 | 72.0 | 319824 | 0.5615 | 0.2187 | 0.0636 | | 0.0276 | 73.0 | 324266 | 0.5725 | 0.2178 | 0.0650 | | 0.0273 | 74.0 | 328708 | 0.5483 | 0.2187 | 0.0634 | | 0.027 | 75.0 | 333150 | 0.5627 | 0.2148 | 0.0632 | | 0.026 | 76.0 | 337592 | 0.5610 | 0.2203 | 0.0655 | | 0.0253 | 77.0 | 342034 | 0.5776 | 0.2153 | 0.0635 | | 0.0248 | 78.0 | 346476 | 0.5823 | 0.2173 | 0.0643 | | 0.0242 | 79.0 | 350918 | 0.5968 | 0.2172 | 0.0639 | | 0.0241 | 80.0 | 355360 | 0.6121 | 0.2185 | 0.0647 | | 0.0232 | 81.0 | 359802 | 0.5909 | 0.2140 | 0.0648 | | 0.0227 | 82.0 | 364244 | 0.6262 | 0.2209 | 0.0663 | | 0.0224 | 83.0 | 368686 | 0.5913 | 0.2137 | 0.0645 | | 0.0215 | 84.0 | 373128 | 0.6057 | 0.2141 | 0.0642 | | 0.0212 | 85.0 | 377570 | 0.6079 | 0.2135 | 0.0635 | | 0.0209 | 86.0 | 382012 | 0.6067 | 0.2117 | 0.0639 | | 0.0201 | 87.0 | 386454 | 0.6119 | 0.2108 | 0.0638 | | 0.0199 | 88.0 | 390896 | 0.6298 | 0.2112 | 0.0638 | | 0.0194 | 89.0 | 395338 | 0.6054 | 0.2083 | 0.0620 | | 0.0192 | 90.0 | 399780 | 0.6238 | 0.2083 | 0.0634 | | 0.0184 | 91.0 | 404222 | 0.6293 | 0.2099 | 0.0630 | | 0.0184 | 92.0 | 408664 | 0.6166 | 0.2058 | 0.0611 | | 0.0182 | 93.0 | 413106 | 0.6175 | 0.2072 | 0.0618 | | 0.0179 | 94.0 | 417548 | 0.6196 | 0.2061 | 0.0610 | | 0.0176 | 95.0 | 421990 | 0.6181 | 0.2059 | 0.0614 | | 0.0174 | 96.0 | 426432 | 0.6187 | 0.2039 | 0.0606 | | 0.0167 | 97.0 | 430874 | 0.6381 | 0.2064 | 0.0615 | | 0.017 | 98.0 | 435316 | 0.6268 | 0.2049 | 0.0611 | | 0.0165 | 99.0 | 439758 | 0.6262 | 0.2041 | 0.0610 | | 0.0166 | 100.0 | 444200 | 0.6251 | 0.2041 | 0.0609 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.1.0+cu118 - Datasets 3.1.0 - Tokenizers 0.20.3