sun-s commited on
Commit
44ba769
·
verified ·
1 Parent(s): 398026d

Upload folder using huggingface_hub

Browse files
.summary/0/events.out.tfevents.1731412340.kemove-z690-a ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:145f1c12a06c25649530c66124d27324d8c09f0405ac69ecf28fdee8af82e893
3
+ size 233544
README.md CHANGED
@@ -15,7 +15,7 @@ model-index:
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
- value: 9.69 +/- 5.71
19
  name: mean_reward
20
  verified: false
21
  ---
@@ -38,19 +38,19 @@ python -m sample_factory.huggingface.load_from_hub -r sun-s/rl_course_vizdoom_he
38
 
39
  To run the model after download, use the `enjoy` script corresponding to this environment:
40
  ```
41
- python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
42
  ```
43
 
44
 
45
  You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
46
  See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
47
-
48
  ## Training with this model
49
 
50
  To continue training with this model, use the `train` script corresponding to this environment:
51
  ```
52
- python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
53
  ```
54
 
55
  Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
56
-
 
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
+ value: 12.95 +/- 5.64
19
  name: mean_reward
20
  verified: false
21
  ---
 
38
 
39
  To run the model after download, use the `enjoy` script corresponding to this environment:
40
  ```
41
+ python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
42
  ```
43
 
44
 
45
  You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
46
  See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
47
+
48
  ## Training with this model
49
 
50
  To continue training with this model, use the `train` script corresponding to this environment:
51
  ```
52
+ python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
53
  ```
54
 
55
  Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
56
+
checkpoint_p0/best_000001490_6103040_reward_28.179.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2614aaf0814d0a444edf755afc63d5195a9058dc33a69080721d79d2062dd236
3
+ size 34929051
checkpoint_p0/checkpoint_000001758_7200768.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:010ebfe2409062777380df8938dfb9d26eae4682b410c02c077802370e2340b0
3
+ size 34929541
checkpoint_p0/checkpoint_000001955_8007680.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3d867ccfc6558ecd4775215a9436398e7911932b52c0ce6b49ec3e3744f43918
3
- size 34929220
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:feaf3e49930218238ee82fdb03e6bbb6d501e4e620c9989b9ac338d8aafc2bef
3
+ size 34929541
config.json CHANGED
@@ -3,7 +3,7 @@
3
  "algo": "APPO",
4
  "env": "doom_health_gathering_supreme",
5
  "experiment": "default_experiment",
6
- "train_dir": "/content/train_dir",
7
  "restart_behavior": "resume",
8
  "device": "gpu",
9
  "seed": null,
@@ -46,6 +46,8 @@
46
  "learning_rate": 0.0001,
47
  "lr_schedule": "constant",
48
  "lr_schedule_kl_threshold": 0.008,
 
 
49
  "obs_subtract_mean": 0.0,
50
  "obs_scale": 255.0,
51
  "normalize_input": true,
@@ -128,14 +130,13 @@
128
  "wide_aspect_ratio": false,
129
  "eval_env_frameskip": 1,
130
  "fps": 35,
131
- "command_line": "--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000",
132
  "cli_args": {
133
  "env": "doom_health_gathering_supreme",
134
  "num_workers": 8,
135
  "num_envs_per_worker": 4,
136
- "train_for_env_steps": 4000000
137
  },
138
  "git_hash": "unknown",
139
- "git_repo_name": "not a git repository",
140
- "train_script": ".usr.local.lib.python3.10.dist-packages.colab_kernel_launcher"
141
  }
 
3
  "algo": "APPO",
4
  "env": "doom_health_gathering_supreme",
5
  "experiment": "default_experiment",
6
+ "train_dir": "/media/kemove/17a64fef-179c-4620-a965-511df0584b38/home/yunpeng/transformers/deep-rl-class-main/notebooks/unit8/train_dir",
7
  "restart_behavior": "resume",
8
  "device": "gpu",
9
  "seed": null,
 
46
  "learning_rate": 0.0001,
47
  "lr_schedule": "constant",
48
  "lr_schedule_kl_threshold": 0.008,
49
+ "lr_adaptive_min": 1e-06,
50
+ "lr_adaptive_max": 0.01,
51
  "obs_subtract_mean": 0.0,
52
  "obs_scale": 255.0,
53
  "normalize_input": true,
 
130
  "wide_aspect_ratio": false,
131
  "eval_env_frameskip": 1,
132
  "fps": 35,
133
+ "command_line": "--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=8000000",
134
  "cli_args": {
135
  "env": "doom_health_gathering_supreme",
136
  "num_workers": 8,
137
  "num_envs_per_worker": 4,
138
+ "train_for_env_steps": 8000000
139
  },
140
  "git_hash": "unknown",
141
+ "git_repo_name": "not a git repository"
 
142
  }
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e9c723b91f02c356e0b0b7d11e0fd8722f555fbd73a48d550f69a75584bc92aa
3
- size 19147554
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c73aa869da7b0ec6631a62eba626b02b002c9998554373ae8d5adef0f2fe691
3
+ size 24921021
sf_log.txt ADDED
@@ -0,0 +1,828 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2024-11-12 19:52:21,455][4080366] Saving configuration to /media/kemove/17a64fef-179c-4620-a965-511df0584b38/home/yunpeng/transformers/deep-rl-class-main/notebooks/unit8/train_dir/default_experiment/config.json...
2
+ [2024-11-12 19:52:21,455][4080366] Rollout worker 0 uses device cpu
3
+ [2024-11-12 19:52:21,455][4080366] Rollout worker 1 uses device cpu
4
+ [2024-11-12 19:52:21,456][4080366] Rollout worker 2 uses device cpu
5
+ [2024-11-12 19:52:21,456][4080366] Rollout worker 3 uses device cpu
6
+ [2024-11-12 19:52:21,456][4080366] Rollout worker 4 uses device cpu
7
+ [2024-11-12 19:52:21,456][4080366] Rollout worker 5 uses device cpu
8
+ [2024-11-12 19:52:21,457][4080366] Rollout worker 6 uses device cpu
9
+ [2024-11-12 19:52:21,457][4080366] Rollout worker 7 uses device cpu
10
+ [2024-11-12 19:52:21,557][4080366] Using GPUs [0] for process 0 (actually maps to GPUs [0])
11
+ [2024-11-12 19:52:21,558][4080366] InferenceWorker_p0-w0: min num requests: 2
12
+ [2024-11-12 19:52:21,577][4080366] Starting all processes...
13
+ [2024-11-12 19:52:21,578][4080366] Starting process learner_proc0
14
+ [2024-11-12 19:52:22,191][4080366] Starting all processes...
15
+ [2024-11-12 19:52:22,216][4080366] Starting process inference_proc0-0
16
+ [2024-11-12 19:52:22,217][4080366] Starting process rollout_proc0
17
+ [2024-11-12 19:52:22,217][4080366] Starting process rollout_proc1
18
+ [2024-11-12 19:52:22,217][4080366] Starting process rollout_proc2
19
+ [2024-11-12 19:52:22,217][4080366] Starting process rollout_proc3
20
+ [2024-11-12 19:52:22,217][4080366] Starting process rollout_proc4
21
+ [2024-11-12 19:52:22,217][4080366] Starting process rollout_proc5
22
+ [2024-11-12 19:52:22,217][4080366] Starting process rollout_proc6
23
+ [2024-11-12 19:52:22,218][4080366] Starting process rollout_proc7
24
+ [2024-11-12 19:52:23,438][4080811] Using GPUs [0] for process 0 (actually maps to GPUs [0])
25
+ [2024-11-12 19:52:23,438][4080811] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
26
+ [2024-11-12 19:52:23,447][4080816] Worker 5 uses CPU cores [15, 16, 17]
27
+ [2024-11-12 19:52:23,467][4080812] Worker 1 uses CPU cores [3, 4, 5]
28
+ [2024-11-12 19:52:23,474][4080814] Worker 2 uses CPU cores [6, 7, 8]
29
+ [2024-11-12 19:52:23,474][4080815] Worker 3 uses CPU cores [9, 10, 11]
30
+ [2024-11-12 19:52:23,476][4080817] Worker 4 uses CPU cores [12, 13, 14]
31
+ [2024-11-12 19:52:23,477][4080798] Using GPUs [0] for process 0 (actually maps to GPUs [0])
32
+ [2024-11-12 19:52:23,477][4080798] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
33
+ [2024-11-12 19:52:23,481][4080811] Num visible devices: 1
34
+ [2024-11-12 19:52:23,527][4080798] Num visible devices: 1
35
+ [2024-11-12 19:52:23,558][4080798] Starting seed is not provided
36
+ [2024-11-12 19:52:23,558][4080798] Using GPUs [0] for process 0 (actually maps to GPUs [0])
37
+ [2024-11-12 19:52:23,558][4080798] Initializing actor-critic model on device cuda:0
38
+ [2024-11-12 19:52:23,559][4080798] RunningMeanStd input shape: (3, 72, 128)
39
+ [2024-11-12 19:52:23,559][4080798] RunningMeanStd input shape: (1,)
40
+ [2024-11-12 19:52:23,570][4080798] ConvEncoder: input_channels=3
41
+ [2024-11-12 19:52:23,588][4080818] Worker 6 uses CPU cores [18, 19, 20]
42
+ [2024-11-12 19:52:23,633][4080813] Worker 0 uses CPU cores [0, 1, 2]
43
+ [2024-11-12 19:52:23,722][4080819] Worker 7 uses CPU cores [21, 22, 23]
44
+ [2024-11-12 19:52:24,116][4080798] Conv encoder output size: 512
45
+ [2024-11-12 19:52:24,116][4080798] Policy head output size: 512
46
+ [2024-11-12 19:52:24,123][4080798] Created Actor Critic model with architecture:
47
+ [2024-11-12 19:52:24,123][4080798] ActorCriticSharedWeights(
48
+ (obs_normalizer): ObservationNormalizer(
49
+ (running_mean_std): RunningMeanStdDictInPlace(
50
+ (running_mean_std): ModuleDict(
51
+ (obs): RunningMeanStdInPlace()
52
+ )
53
+ )
54
+ )
55
+ (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
56
+ (encoder): VizdoomEncoder(
57
+ (basic_encoder): ConvEncoder(
58
+ (enc): RecursiveScriptModule(
59
+ original_name=ConvEncoderImpl
60
+ (conv_head): RecursiveScriptModule(
61
+ original_name=Sequential
62
+ (0): RecursiveScriptModule(original_name=Conv2d)
63
+ (1): RecursiveScriptModule(original_name=ELU)
64
+ (2): RecursiveScriptModule(original_name=Conv2d)
65
+ (3): RecursiveScriptModule(original_name=ELU)
66
+ (4): RecursiveScriptModule(original_name=Conv2d)
67
+ (5): RecursiveScriptModule(original_name=ELU)
68
+ )
69
+ (mlp_layers): RecursiveScriptModule(
70
+ original_name=Sequential
71
+ (0): RecursiveScriptModule(original_name=Linear)
72
+ (1): RecursiveScriptModule(original_name=ELU)
73
+ )
74
+ )
75
+ )
76
+ )
77
+ (core): ModelCoreRNN(
78
+ (core): GRU(512, 512)
79
+ )
80
+ (decoder): MlpDecoder(
81
+ (mlp): Identity()
82
+ )
83
+ (critic_linear): Linear(in_features=512, out_features=1, bias=True)
84
+ (action_parameterization): ActionParameterizationDefault(
85
+ (distribution_linear): Linear(in_features=512, out_features=5, bias=True)
86
+ )
87
+ )
88
+ [2024-11-12 19:52:24,454][4080798] Using optimizer <class 'torch.optim.adam.Adam'>
89
+ [2024-11-12 19:52:24,811][4080798] No checkpoints found
90
+ [2024-11-12 19:52:24,811][4080798] Did not load from checkpoint, starting from scratch!
91
+ [2024-11-12 19:52:24,811][4080798] Initialized policy 0 weights for model version 0
92
+ [2024-11-12 19:52:24,812][4080798] LearnerWorker_p0 finished initialization!
93
+ [2024-11-12 19:52:24,812][4080798] Using GPUs [0] for process 0 (actually maps to GPUs [0])
94
+ [2024-11-12 19:52:24,883][4080811] RunningMeanStd input shape: (3, 72, 128)
95
+ [2024-11-12 19:52:24,884][4080811] RunningMeanStd input shape: (1,)
96
+ [2024-11-12 19:52:24,890][4080811] ConvEncoder: input_channels=3
97
+ [2024-11-12 19:52:24,936][4080811] Conv encoder output size: 512
98
+ [2024-11-12 19:52:24,936][4080811] Policy head output size: 512
99
+ [2024-11-12 19:52:24,964][4080366] Inference worker 0-0 is ready!
100
+ [2024-11-12 19:52:24,965][4080366] All inference workers are ready! Signal rollout workers to start!
101
+ [2024-11-12 19:52:25,000][4080814] Doom resolution: 160x120, resize resolution: (128, 72)
102
+ [2024-11-12 19:52:25,000][4080813] Doom resolution: 160x120, resize resolution: (128, 72)
103
+ [2024-11-12 19:52:25,000][4080817] Doom resolution: 160x120, resize resolution: (128, 72)
104
+ [2024-11-12 19:52:25,000][4080815] Doom resolution: 160x120, resize resolution: (128, 72)
105
+ [2024-11-12 19:52:25,000][4080812] Doom resolution: 160x120, resize resolution: (128, 72)
106
+ [2024-11-12 19:52:25,001][4080816] Doom resolution: 160x120, resize resolution: (128, 72)
107
+ [2024-11-12 19:52:25,008][4080819] Doom resolution: 160x120, resize resolution: (128, 72)
108
+ [2024-11-12 19:52:25,011][4080818] Doom resolution: 160x120, resize resolution: (128, 72)
109
+ [2024-11-12 19:52:25,322][4080366] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
110
+ [2024-11-12 19:52:25,444][4080817] Decorrelating experience for 0 frames...
111
+ [2024-11-12 19:52:25,446][4080815] Decorrelating experience for 0 frames...
112
+ [2024-11-12 19:52:25,448][4080816] Decorrelating experience for 0 frames...
113
+ [2024-11-12 19:52:25,449][4080819] Decorrelating experience for 0 frames...
114
+ [2024-11-12 19:52:25,581][4080815] Decorrelating experience for 32 frames...
115
+ [2024-11-12 19:52:25,586][4080812] Decorrelating experience for 0 frames...
116
+ [2024-11-12 19:52:25,662][4080816] Decorrelating experience for 32 frames...
117
+ [2024-11-12 19:52:25,723][4080812] Decorrelating experience for 32 frames...
118
+ [2024-11-12 19:52:25,732][4080817] Decorrelating experience for 32 frames...
119
+ [2024-11-12 19:52:25,897][4080817] Decorrelating experience for 64 frames...
120
+ [2024-11-12 19:52:25,919][4080819] Decorrelating experience for 32 frames...
121
+ [2024-11-12 19:52:25,924][4080816] Decorrelating experience for 64 frames...
122
+ [2024-11-12 19:52:25,978][4080818] Decorrelating experience for 0 frames...
123
+ [2024-11-12 19:52:26,046][4080817] Decorrelating experience for 96 frames...
124
+ [2024-11-12 19:52:26,094][4080812] Decorrelating experience for 64 frames...
125
+ [2024-11-12 19:52:26,150][4080816] Decorrelating experience for 96 frames...
126
+ [2024-11-12 19:52:26,151][4080815] Decorrelating experience for 64 frames...
127
+ [2024-11-12 19:52:26,193][4080818] Decorrelating experience for 32 frames...
128
+ [2024-11-12 19:52:26,288][4080819] Decorrelating experience for 64 frames...
129
+ [2024-11-12 19:52:26,290][4080812] Decorrelating experience for 96 frames...
130
+ [2024-11-12 19:52:26,291][4080815] Decorrelating experience for 96 frames...
131
+ [2024-11-12 19:52:26,455][4080818] Decorrelating experience for 64 frames...
132
+ [2024-11-12 19:52:26,519][4080819] Decorrelating experience for 96 frames...
133
+ [2024-11-12 19:52:26,681][4080818] Decorrelating experience for 96 frames...
134
+ [2024-11-12 19:52:29,589][4080798] Signal inference workers to stop experience collection...
135
+ [2024-11-12 19:52:29,592][4080811] InferenceWorker_p0-w0: stopping experience collection
136
+ [2024-11-12 19:52:30,322][4080366] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 5.6. Samples: 28. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
137
+ [2024-11-12 19:52:30,325][4080366] Avg episode reward: [(0, '2.638')]
138
+ [2024-11-12 19:52:34,741][4080798] Signal inference workers to resume experience collection...
139
+ [2024-11-12 19:52:34,741][4080811] InferenceWorker_p0-w0: resuming experience collection
140
+ [2024-11-12 19:52:35,321][4080366] Fps is (10 sec: 1638.5, 60 sec: 1638.5, 300 sec: 1638.5). Total num frames: 16384. Throughput: 0: 238.2. Samples: 2382. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0)
141
+ [2024-11-12 19:52:35,322][4080366] Avg episode reward: [(0, '3.726')]
142
+ [2024-11-12 19:52:35,990][4080811] Updated weights for policy 0, policy_version 10 (0.0186)
143
+ [2024-11-12 19:52:37,286][4080811] Updated weights for policy 0, policy_version 20 (0.0007)
144
+ [2024-11-12 19:52:38,492][4080811] Updated weights for policy 0, policy_version 30 (0.0005)
145
+ [2024-11-12 19:52:39,775][4080811] Updated weights for policy 0, policy_version 40 (0.0006)
146
+ [2024-11-12 19:52:40,321][4080366] Fps is (10 sec: 18023.6, 60 sec: 12015.4, 300 sec: 12015.4). Total num frames: 180224. Throughput: 0: 2887.3. Samples: 43308. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
147
+ [2024-11-12 19:52:40,322][4080366] Avg episode reward: [(0, '4.426')]
148
+ [2024-11-12 19:52:40,343][4080798] Saving new best policy, reward=4.426!
149
+ [2024-11-12 19:52:40,999][4080811] Updated weights for policy 0, policy_version 50 (0.0006)
150
+ [2024-11-12 19:52:41,553][4080366] Heartbeat connected on LearnerWorker_p0
151
+ [2024-11-12 19:52:41,557][4080366] Heartbeat connected on Batcher_0
152
+ [2024-11-12 19:52:41,563][4080366] Heartbeat connected on InferenceWorker_p0-w0
153
+ [2024-11-12 19:52:41,566][4080366] Heartbeat connected on RolloutWorker_w1
154
+ [2024-11-12 19:52:41,571][4080366] Heartbeat connected on RolloutWorker_w3
155
+ [2024-11-12 19:52:41,571][4080366] Heartbeat connected on RolloutWorker_w4
156
+ [2024-11-12 19:52:41,573][4080366] Heartbeat connected on RolloutWorker_w5
157
+ [2024-11-12 19:52:41,575][4080366] Heartbeat connected on RolloutWorker_w6
158
+ [2024-11-12 19:52:41,580][4080366] Heartbeat connected on RolloutWorker_w7
159
+ [2024-11-12 19:52:42,204][4080811] Updated weights for policy 0, policy_version 60 (0.0006)
160
+ [2024-11-12 19:52:43,423][4080811] Updated weights for policy 0, policy_version 70 (0.0006)
161
+ [2024-11-12 19:52:44,641][4080811] Updated weights for policy 0, policy_version 80 (0.0005)
162
+ [2024-11-12 19:52:45,321][4080366] Fps is (10 sec: 33177.5, 60 sec: 17408.4, 300 sec: 17408.4). Total num frames: 348160. Throughput: 0: 3410.1. Samples: 68200. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
163
+ [2024-11-12 19:52:45,322][4080366] Avg episode reward: [(0, '4.315')]
164
+ [2024-11-12 19:52:45,826][4080811] Updated weights for policy 0, policy_version 90 (0.0005)
165
+ [2024-11-12 19:52:47,006][4080811] Updated weights for policy 0, policy_version 100 (0.0005)
166
+ [2024-11-12 19:52:48,164][4080811] Updated weights for policy 0, policy_version 110 (0.0006)
167
+ [2024-11-12 19:52:49,316][4080811] Updated weights for policy 0, policy_version 120 (0.0005)
168
+ [2024-11-12 19:52:50,321][4080366] Fps is (10 sec: 34405.3, 60 sec: 20971.7, 300 sec: 20971.7). Total num frames: 524288. Throughput: 0: 4811.7. Samples: 120292. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
169
+ [2024-11-12 19:52:50,322][4080366] Avg episode reward: [(0, '4.520')]
170
+ [2024-11-12 19:52:50,326][4080798] Saving new best policy, reward=4.520!
171
+ [2024-11-12 19:52:50,476][4080811] Updated weights for policy 0, policy_version 130 (0.0005)
172
+ [2024-11-12 19:52:51,623][4080811] Updated weights for policy 0, policy_version 140 (0.0005)
173
+ [2024-11-12 19:52:52,757][4080811] Updated weights for policy 0, policy_version 150 (0.0005)
174
+ [2024-11-12 19:52:53,932][4080811] Updated weights for policy 0, policy_version 160 (0.0006)
175
+ [2024-11-12 19:52:55,125][4080811] Updated weights for policy 0, policy_version 170 (0.0006)
176
+ [2024-11-12 19:52:55,321][4080366] Fps is (10 sec: 35225.6, 60 sec: 23347.6, 300 sec: 23347.6). Total num frames: 700416. Throughput: 0: 5779.0. Samples: 173368. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
177
+ [2024-11-12 19:52:55,322][4080366] Avg episode reward: [(0, '4.636')]
178
+ [2024-11-12 19:52:55,323][4080798] Saving new best policy, reward=4.636!
179
+ [2024-11-12 19:52:56,359][4080811] Updated weights for policy 0, policy_version 180 (0.0006)
180
+ [2024-11-12 19:52:57,539][4080811] Updated weights for policy 0, policy_version 190 (0.0005)
181
+ [2024-11-12 19:52:58,856][4080811] Updated weights for policy 0, policy_version 200 (0.0005)
182
+ [2024-11-12 19:53:00,042][4080811] Updated weights for policy 0, policy_version 210 (0.0005)
183
+ [2024-11-12 19:53:00,321][4080366] Fps is (10 sec: 34407.1, 60 sec: 24810.4, 300 sec: 24810.4). Total num frames: 868352. Throughput: 0: 5668.5. Samples: 198394. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
184
+ [2024-11-12 19:53:00,322][4080366] Avg episode reward: [(0, '4.573')]
185
+ [2024-11-12 19:53:01,307][4080811] Updated weights for policy 0, policy_version 220 (0.0005)
186
+ [2024-11-12 19:53:02,524][4080811] Updated weights for policy 0, policy_version 230 (0.0006)
187
+ [2024-11-12 19:53:03,789][4080811] Updated weights for policy 0, policy_version 240 (0.0006)
188
+ [2024-11-12 19:53:04,964][4080811] Updated weights for policy 0, policy_version 250 (0.0005)
189
+ [2024-11-12 19:53:05,321][4080366] Fps is (10 sec: 33177.9, 60 sec: 25805.2, 300 sec: 25805.2). Total num frames: 1032192. Throughput: 0: 6195.6. Samples: 247822. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
190
+ [2024-11-12 19:53:05,322][4080366] Avg episode reward: [(0, '4.831')]
191
+ [2024-11-12 19:53:05,339][4080798] Saving new best policy, reward=4.831!
192
+ [2024-11-12 19:53:06,199][4080811] Updated weights for policy 0, policy_version 260 (0.0005)
193
+ [2024-11-12 19:53:07,374][4080811] Updated weights for policy 0, policy_version 270 (0.0005)
194
+ [2024-11-12 19:53:08,535][4080811] Updated weights for policy 0, policy_version 280 (0.0006)
195
+ [2024-11-12 19:53:09,725][4080811] Updated weights for policy 0, policy_version 290 (0.0005)
196
+ [2024-11-12 19:53:10,321][4080366] Fps is (10 sec: 33587.4, 60 sec: 26760.8, 300 sec: 26760.8). Total num frames: 1204224. Throughput: 0: 6656.6. Samples: 299542. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
197
+ [2024-11-12 19:53:10,322][4080366] Avg episode reward: [(0, '5.176')]
198
+ [2024-11-12 19:53:10,338][4080798] Saving new best policy, reward=5.176!
199
+ [2024-11-12 19:53:10,967][4080811] Updated weights for policy 0, policy_version 300 (0.0006)
200
+ [2024-11-12 19:53:12,166][4080811] Updated weights for policy 0, policy_version 310 (0.0006)
201
+ [2024-11-12 19:53:13,332][4080811] Updated weights for policy 0, policy_version 320 (0.0006)
202
+ [2024-11-12 19:53:14,540][4080811] Updated weights for policy 0, policy_version 330 (0.0005)
203
+ [2024-11-12 19:53:15,321][4080366] Fps is (10 sec: 34406.4, 60 sec: 27525.4, 300 sec: 27525.4). Total num frames: 1376256. Throughput: 0: 7217.0. Samples: 324790. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
204
+ [2024-11-12 19:53:15,322][4080366] Avg episode reward: [(0, '5.563')]
205
+ [2024-11-12 19:53:15,323][4080798] Saving new best policy, reward=5.563!
206
+ [2024-11-12 19:53:15,772][4080811] Updated weights for policy 0, policy_version 340 (0.0005)
207
+ [2024-11-12 19:53:16,953][4080811] Updated weights for policy 0, policy_version 350 (0.0006)
208
+ [2024-11-12 19:53:18,355][4080811] Updated weights for policy 0, policy_version 360 (0.0007)
209
+ [2024-11-12 19:53:19,675][4080811] Updated weights for policy 0, policy_version 370 (0.0006)
210
+ [2024-11-12 19:53:20,321][4080366] Fps is (10 sec: 32768.3, 60 sec: 27853.1, 300 sec: 27853.1). Total num frames: 1531904. Throughput: 0: 8255.6. Samples: 373882. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
211
+ [2024-11-12 19:53:20,322][4080366] Avg episode reward: [(0, '6.977')]
212
+ [2024-11-12 19:53:20,325][4080798] Saving new best policy, reward=6.977!
213
+ [2024-11-12 19:53:20,994][4080811] Updated weights for policy 0, policy_version 380 (0.0006)
214
+ [2024-11-12 19:53:22,301][4080811] Updated weights for policy 0, policy_version 390 (0.0006)
215
+ [2024-11-12 19:53:23,657][4080811] Updated weights for policy 0, policy_version 400 (0.0007)
216
+ [2024-11-12 19:53:24,971][4080811] Updated weights for policy 0, policy_version 410 (0.0007)
217
+ [2024-11-12 19:53:25,321][4080366] Fps is (10 sec: 31129.4, 60 sec: 28126.1, 300 sec: 28126.1). Total num frames: 1687552. Throughput: 0: 8380.0. Samples: 420410. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
218
+ [2024-11-12 19:53:25,322][4080366] Avg episode reward: [(0, '8.040')]
219
+ [2024-11-12 19:53:25,323][4080798] Saving new best policy, reward=8.040!
220
+ [2024-11-12 19:53:26,341][4080811] Updated weights for policy 0, policy_version 420 (0.0006)
221
+ [2024-11-12 19:53:27,629][4080811] Updated weights for policy 0, policy_version 430 (0.0007)
222
+ [2024-11-12 19:53:28,946][4080811] Updated weights for policy 0, policy_version 440 (0.0006)
223
+ [2024-11-12 19:53:30,242][4080811] Updated weights for policy 0, policy_version 450 (0.0006)
224
+ [2024-11-12 19:53:30,321][4080366] Fps is (10 sec: 31129.3, 60 sec: 30720.3, 300 sec: 28357.1). Total num frames: 1843200. Throughput: 0: 8339.3. Samples: 443470. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
225
+ [2024-11-12 19:53:30,322][4080366] Avg episode reward: [(0, '9.563')]
226
+ [2024-11-12 19:53:30,324][4080798] Saving new best policy, reward=9.563!
227
+ [2024-11-12 19:53:31,542][4080811] Updated weights for policy 0, policy_version 460 (0.0008)
228
+ [2024-11-12 19:53:32,828][4080811] Updated weights for policy 0, policy_version 470 (0.0007)
229
+ [2024-11-12 19:53:34,122][4080811] Updated weights for policy 0, policy_version 480 (0.0007)
230
+ [2024-11-12 19:53:35,321][4080366] Fps is (10 sec: 31538.8, 60 sec: 33109.2, 300 sec: 28613.6). Total num frames: 2002944. Throughput: 0: 8235.5. Samples: 490890. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
231
+ [2024-11-12 19:53:35,322][4080366] Avg episode reward: [(0, '13.531')]
232
+ [2024-11-12 19:53:35,323][4080798] Saving new best policy, reward=13.531!
233
+ [2024-11-12 19:53:35,451][4080811] Updated weights for policy 0, policy_version 490 (0.0008)
234
+ [2024-11-12 19:53:36,761][4080811] Updated weights for policy 0, policy_version 500 (0.0008)
235
+ [2024-11-12 19:53:38,096][4080811] Updated weights for policy 0, policy_version 510 (0.0007)
236
+ [2024-11-12 19:53:39,399][4080811] Updated weights for policy 0, policy_version 520 (0.0007)
237
+ [2024-11-12 19:53:40,321][4080366] Fps is (10 sec: 31128.9, 60 sec: 32904.4, 300 sec: 28726.7). Total num frames: 2154496. Throughput: 0: 8089.3. Samples: 537386. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
238
+ [2024-11-12 19:53:40,322][4080366] Avg episode reward: [(0, '11.571')]
239
+ [2024-11-12 19:53:40,732][4080811] Updated weights for policy 0, policy_version 530 (0.0008)
240
+ [2024-11-12 19:53:42,064][4080811] Updated weights for policy 0, policy_version 540 (0.0007)
241
+ [2024-11-12 19:53:43,380][4080811] Updated weights for policy 0, policy_version 550 (0.0007)
242
+ [2024-11-12 19:53:44,668][4080811] Updated weights for policy 0, policy_version 560 (0.0006)
243
+ [2024-11-12 19:53:45,321][4080366] Fps is (10 sec: 31129.4, 60 sec: 32767.9, 300 sec: 28928.1). Total num frames: 2314240. Throughput: 0: 8048.8. Samples: 560592. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
244
+ [2024-11-12 19:53:45,323][4080366] Avg episode reward: [(0, '14.270')]
245
+ [2024-11-12 19:53:45,324][4080798] Saving new best policy, reward=14.270!
246
+ [2024-11-12 19:53:45,962][4080811] Updated weights for policy 0, policy_version 570 (0.0007)
247
+ [2024-11-12 19:53:47,236][4080811] Updated weights for policy 0, policy_version 580 (0.0007)
248
+ [2024-11-12 19:53:48,505][4080811] Updated weights for policy 0, policy_version 590 (0.0006)
249
+ [2024-11-12 19:53:49,793][4080811] Updated weights for policy 0, policy_version 600 (0.0007)
250
+ [2024-11-12 19:53:50,321][4080366] Fps is (10 sec: 31949.1, 60 sec: 32495.0, 300 sec: 29105.8). Total num frames: 2473984. Throughput: 0: 8007.6. Samples: 608166. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
251
+ [2024-11-12 19:53:50,322][4080366] Avg episode reward: [(0, '18.421')]
252
+ [2024-11-12 19:53:50,324][4080798] Saving new best policy, reward=18.421!
253
+ [2024-11-12 19:53:51,090][4080811] Updated weights for policy 0, policy_version 610 (0.0007)
254
+ [2024-11-12 19:53:52,345][4080811] Updated weights for policy 0, policy_version 620 (0.0006)
255
+ [2024-11-12 19:53:53,607][4080811] Updated weights for policy 0, policy_version 630 (0.0007)
256
+ [2024-11-12 19:53:54,903][4080811] Updated weights for policy 0, policy_version 640 (0.0007)
257
+ [2024-11-12 19:53:55,321][4080366] Fps is (10 sec: 31948.9, 60 sec: 32221.8, 300 sec: 29263.7). Total num frames: 2633728. Throughput: 0: 7931.1. Samples: 656444. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
258
+ [2024-11-12 19:53:55,322][4080366] Avg episode reward: [(0, '17.658')]
259
+ [2024-11-12 19:53:56,195][4080811] Updated weights for policy 0, policy_version 650 (0.0006)
260
+ [2024-11-12 19:53:57,483][4080811] Updated weights for policy 0, policy_version 660 (0.0007)
261
+ [2024-11-12 19:53:58,751][4080811] Updated weights for policy 0, policy_version 670 (0.0007)
262
+ [2024-11-12 19:54:00,013][4080811] Updated weights for policy 0, policy_version 680 (0.0006)
263
+ [2024-11-12 19:54:00,321][4080366] Fps is (10 sec: 31948.8, 60 sec: 32085.3, 300 sec: 29405.1). Total num frames: 2793472. Throughput: 0: 7900.4. Samples: 680308. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
264
+ [2024-11-12 19:54:00,322][4080366] Avg episode reward: [(0, '19.218')]
265
+ [2024-11-12 19:54:00,324][4080798] Saving new best policy, reward=19.218!
266
+ [2024-11-12 19:54:01,308][4080811] Updated weights for policy 0, policy_version 690 (0.0007)
267
+ [2024-11-12 19:54:02,563][4080811] Updated weights for policy 0, policy_version 700 (0.0007)
268
+ [2024-11-12 19:54:03,873][4080811] Updated weights for policy 0, policy_version 710 (0.0007)
269
+ [2024-11-12 19:54:05,163][4080811] Updated weights for policy 0, policy_version 720 (0.0007)
270
+ [2024-11-12 19:54:05,321][4080366] Fps is (10 sec: 31949.5, 60 sec: 32017.0, 300 sec: 29532.3). Total num frames: 2953216. Throughput: 0: 7872.6. Samples: 728150. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
271
+ [2024-11-12 19:54:05,322][4080366] Avg episode reward: [(0, '20.431')]
272
+ [2024-11-12 19:54:05,322][4080798] Saving new best policy, reward=20.431!
273
+ [2024-11-12 19:54:06,499][4080811] Updated weights for policy 0, policy_version 730 (0.0007)
274
+ [2024-11-12 19:54:07,813][4080811] Updated weights for policy 0, policy_version 740 (0.0007)
275
+ [2024-11-12 19:54:09,097][4080811] Updated weights for policy 0, policy_version 750 (0.0007)
276
+ [2024-11-12 19:54:10,321][4080366] Fps is (10 sec: 31539.3, 60 sec: 31744.0, 300 sec: 29608.4). Total num frames: 3108864. Throughput: 0: 7883.9. Samples: 775188. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
277
+ [2024-11-12 19:54:10,322][4080366] Avg episode reward: [(0, '21.010')]
278
+ [2024-11-12 19:54:10,325][4080798] Saving new best policy, reward=21.010!
279
+ [2024-11-12 19:54:10,442][4080811] Updated weights for policy 0, policy_version 760 (0.0006)
280
+ [2024-11-12 19:54:11,730][4080811] Updated weights for policy 0, policy_version 770 (0.0007)
281
+ [2024-11-12 19:54:13,003][4080811] Updated weights for policy 0, policy_version 780 (0.0007)
282
+ [2024-11-12 19:54:14,292][4080811] Updated weights for policy 0, policy_version 790 (0.0006)
283
+ [2024-11-12 19:54:15,321][4080366] Fps is (10 sec: 31538.6, 60 sec: 31539.1, 300 sec: 29714.7). Total num frames: 3268608. Throughput: 0: 7896.5. Samples: 798812. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
284
+ [2024-11-12 19:54:15,322][4080366] Avg episode reward: [(0, '19.712')]
285
+ [2024-11-12 19:54:15,591][4080811] Updated weights for policy 0, policy_version 800 (0.0007)
286
+ [2024-11-12 19:54:16,927][4080811] Updated weights for policy 0, policy_version 810 (0.0008)
287
+ [2024-11-12 19:54:18,182][4080811] Updated weights for policy 0, policy_version 820 (0.0007)
288
+ [2024-11-12 19:54:19,484][4080811] Updated weights for policy 0, policy_version 830 (0.0007)
289
+ [2024-11-12 19:54:20,321][4080366] Fps is (10 sec: 31539.1, 60 sec: 31539.1, 300 sec: 29776.2). Total num frames: 3424256. Throughput: 0: 7894.8. Samples: 846156. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
290
+ [2024-11-12 19:54:20,322][4080366] Avg episode reward: [(0, '20.980')]
291
+ [2024-11-12 19:54:20,325][4080798] Saving /media/kemove/17a64fef-179c-4620-a965-511df0584b38/home/yunpeng/transformers/deep-rl-class-main/notebooks/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000836_3424256.pth...
292
+ [2024-11-12 19:54:20,821][4080811] Updated weights for policy 0, policy_version 840 (0.0007)
293
+ [2024-11-12 19:54:22,091][4080811] Updated weights for policy 0, policy_version 850 (0.0006)
294
+ [2024-11-12 19:54:23,347][4080811] Updated weights for policy 0, policy_version 860 (0.0007)
295
+ [2024-11-12 19:54:24,660][4080811] Updated weights for policy 0, policy_version 870 (0.0007)
296
+ [2024-11-12 19:54:25,321][4080366] Fps is (10 sec: 31539.4, 60 sec: 31607.4, 300 sec: 29866.8). Total num frames: 3584000. Throughput: 0: 7924.6. Samples: 893990. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
297
+ [2024-11-12 19:54:25,322][4080366] Avg episode reward: [(0, '24.097')]
298
+ [2024-11-12 19:54:25,323][4080798] Saving new best policy, reward=24.097!
299
+ [2024-11-12 19:54:25,927][4080811] Updated weights for policy 0, policy_version 880 (0.0007)
300
+ [2024-11-12 19:54:27,263][4080811] Updated weights for policy 0, policy_version 890 (0.0007)
301
+ [2024-11-12 19:54:28,511][4080811] Updated weights for policy 0, policy_version 900 (0.0006)
302
+ [2024-11-12 19:54:29,754][4080811] Updated weights for policy 0, policy_version 910 (0.0007)
303
+ [2024-11-12 19:54:30,321][4080366] Fps is (10 sec: 31949.2, 60 sec: 31675.7, 300 sec: 29950.1). Total num frames: 3743744. Throughput: 0: 7933.9. Samples: 917618. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
304
+ [2024-11-12 19:54:30,322][4080366] Avg episode reward: [(0, '19.775')]
305
+ [2024-11-12 19:54:31,050][4080811] Updated weights for policy 0, policy_version 920 (0.0006)
306
+ [2024-11-12 19:54:32,328][4080811] Updated weights for policy 0, policy_version 930 (0.0006)
307
+ [2024-11-12 19:54:33,644][4080811] Updated weights for policy 0, policy_version 940 (0.0007)
308
+ [2024-11-12 19:54:34,921][4080811] Updated weights for policy 0, policy_version 950 (0.0007)
309
+ [2024-11-12 19:54:35,321][4080366] Fps is (10 sec: 31949.1, 60 sec: 31675.8, 300 sec: 30026.9). Total num frames: 3903488. Throughput: 0: 7943.9. Samples: 965640. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
310
+ [2024-11-12 19:54:35,322][4080366] Avg episode reward: [(0, '24.386')]
311
+ [2024-11-12 19:54:35,323][4080798] Saving new best policy, reward=24.386!
312
+ [2024-11-12 19:54:36,212][4080811] Updated weights for policy 0, policy_version 960 (0.0007)
313
+ [2024-11-12 19:54:37,485][4080811] Updated weights for policy 0, policy_version 970 (0.0006)
314
+ [2024-11-12 19:54:38,791][4080811] Updated weights for policy 0, policy_version 980 (0.0006)
315
+ [2024-11-12 19:54:40,162][4080811] Updated weights for policy 0, policy_version 990 (0.0008)
316
+ [2024-11-12 19:54:40,321][4080366] Fps is (10 sec: 31129.4, 60 sec: 31675.8, 300 sec: 30037.4). Total num frames: 4055040. Throughput: 0: 7919.0. Samples: 1012800. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
317
+ [2024-11-12 19:54:40,323][4080366] Avg episode reward: [(0, '20.459')]
318
+ [2024-11-12 19:54:41,559][4080811] Updated weights for policy 0, policy_version 1000 (0.0007)
319
+ [2024-11-12 19:54:42,863][4080811] Updated weights for policy 0, policy_version 1010 (0.0006)
320
+ [2024-11-12 19:54:44,129][4080811] Updated weights for policy 0, policy_version 1020 (0.0006)
321
+ [2024-11-12 19:54:45,321][4080366] Fps is (10 sec: 31129.7, 60 sec: 31675.9, 300 sec: 30105.7). Total num frames: 4214784. Throughput: 0: 7895.7. Samples: 1035614. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
322
+ [2024-11-12 19:54:45,322][4080366] Avg episode reward: [(0, '23.194')]
323
+ [2024-11-12 19:54:45,414][4080811] Updated weights for policy 0, policy_version 1030 (0.0007)
324
+ [2024-11-12 19:54:46,708][4080811] Updated weights for policy 0, policy_version 1040 (0.0007)
325
+ [2024-11-12 19:54:47,990][4080811] Updated weights for policy 0, policy_version 1050 (0.0007)
326
+ [2024-11-12 19:54:49,290][4080811] Updated weights for policy 0, policy_version 1060 (0.0006)
327
+ [2024-11-12 19:54:50,321][4080366] Fps is (10 sec: 31539.1, 60 sec: 31607.5, 300 sec: 30141.0). Total num frames: 4370432. Throughput: 0: 7895.0. Samples: 1083428. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
328
+ [2024-11-12 19:54:50,323][4080366] Avg episode reward: [(0, '22.905')]
329
+ [2024-11-12 19:54:50,575][4080811] Updated weights for policy 0, policy_version 1070 (0.0007)
330
+ [2024-11-12 19:54:51,844][4080811] Updated weights for policy 0, policy_version 1080 (0.0007)
331
+ [2024-11-12 19:54:53,146][4080811] Updated weights for policy 0, policy_version 1090 (0.0007)
332
+ [2024-11-12 19:54:54,425][4080811] Updated weights for policy 0, policy_version 1100 (0.0007)
333
+ [2024-11-12 19:54:55,321][4080366] Fps is (10 sec: 31948.2, 60 sec: 31675.7, 300 sec: 30228.6). Total num frames: 4534272. Throughput: 0: 7909.7. Samples: 1131126. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
334
+ [2024-11-12 19:54:55,322][4080366] Avg episode reward: [(0, '22.847')]
335
+ [2024-11-12 19:54:55,731][4080811] Updated weights for policy 0, policy_version 1110 (0.0006)
336
+ [2024-11-12 19:54:57,043][4080811] Updated weights for policy 0, policy_version 1120 (0.0006)
337
+ [2024-11-12 19:54:58,317][4080811] Updated weights for policy 0, policy_version 1130 (0.0007)
338
+ [2024-11-12 19:54:59,597][4080811] Updated weights for policy 0, policy_version 1140 (0.0007)
339
+ [2024-11-12 19:55:00,321][4080366] Fps is (10 sec: 31948.6, 60 sec: 31607.5, 300 sec: 30257.6). Total num frames: 4689920. Throughput: 0: 7910.7. Samples: 1154792. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
340
+ [2024-11-12 19:55:00,322][4080366] Avg episode reward: [(0, '22.796')]
341
+ [2024-11-12 19:55:00,902][4080811] Updated weights for policy 0, policy_version 1150 (0.0008)
342
+ [2024-11-12 19:55:02,163][4080811] Updated weights for policy 0, policy_version 1160 (0.0007)
343
+ [2024-11-12 19:55:03,458][4080811] Updated weights for policy 0, policy_version 1170 (0.0006)
344
+ [2024-11-12 19:55:04,733][4080811] Updated weights for policy 0, policy_version 1180 (0.0007)
345
+ [2024-11-12 19:55:05,321][4080366] Fps is (10 sec: 31539.2, 60 sec: 31607.4, 300 sec: 30310.5). Total num frames: 4849664. Throughput: 0: 7921.5. Samples: 1202622. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
346
+ [2024-11-12 19:55:05,322][4080366] Avg episode reward: [(0, '21.007')]
347
+ [2024-11-12 19:55:06,037][4080811] Updated weights for policy 0, policy_version 1190 (0.0007)
348
+ [2024-11-12 19:55:07,375][4080811] Updated weights for policy 0, policy_version 1200 (0.0007)
349
+ [2024-11-12 19:55:08,671][4080811] Updated weights for policy 0, policy_version 1210 (0.0007)
350
+ [2024-11-12 19:55:10,005][4080811] Updated weights for policy 0, policy_version 1220 (0.0007)
351
+ [2024-11-12 19:55:10,321][4080366] Fps is (10 sec: 31539.8, 60 sec: 31607.5, 300 sec: 30335.3). Total num frames: 5005312. Throughput: 0: 7902.2. Samples: 1249590. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
352
+ [2024-11-12 19:55:10,322][4080366] Avg episode reward: [(0, '21.686')]
353
+ [2024-11-12 19:55:11,313][4080811] Updated weights for policy 0, policy_version 1230 (0.0006)
354
+ [2024-11-12 19:55:12,624][4080811] Updated weights for policy 0, policy_version 1240 (0.0007)
355
+ [2024-11-12 19:55:13,925][4080811] Updated weights for policy 0, policy_version 1250 (0.0006)
356
+ [2024-11-12 19:55:15,236][4080811] Updated weights for policy 0, policy_version 1260 (0.0007)
357
+ [2024-11-12 19:55:15,321][4080366] Fps is (10 sec: 31128.7, 60 sec: 31539.1, 300 sec: 30358.6). Total num frames: 5160960. Throughput: 0: 7895.0. Samples: 1272896. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
358
+ [2024-11-12 19:55:15,323][4080366] Avg episode reward: [(0, '21.382')]
359
+ [2024-11-12 19:55:16,526][4080811] Updated weights for policy 0, policy_version 1270 (0.0007)
360
+ [2024-11-12 19:55:17,820][4080811] Updated weights for policy 0, policy_version 1280 (0.0007)
361
+ [2024-11-12 19:55:19,091][4080811] Updated weights for policy 0, policy_version 1290 (0.0006)
362
+ [2024-11-12 19:55:20,321][4080366] Fps is (10 sec: 31539.2, 60 sec: 31607.6, 300 sec: 30404.1). Total num frames: 5320704. Throughput: 0: 7884.1. Samples: 1320426. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
363
+ [2024-11-12 19:55:20,322][4080366] Avg episode reward: [(0, '21.192')]
364
+ [2024-11-12 19:55:20,389][4080811] Updated weights for policy 0, policy_version 1300 (0.0007)
365
+ [2024-11-12 19:55:21,712][4080811] Updated weights for policy 0, policy_version 1310 (0.0006)
366
+ [2024-11-12 19:55:22,986][4080811] Updated weights for policy 0, policy_version 1320 (0.0007)
367
+ [2024-11-12 19:55:24,274][4080811] Updated weights for policy 0, policy_version 1330 (0.0007)
368
+ [2024-11-12 19:55:25,321][4080366] Fps is (10 sec: 31950.0, 60 sec: 31607.5, 300 sec: 30447.0). Total num frames: 5480448. Throughput: 0: 7889.9. Samples: 1367846. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
369
+ [2024-11-12 19:55:25,322][4080366] Avg episode reward: [(0, '23.688')]
370
+ [2024-11-12 19:55:25,596][4080811] Updated weights for policy 0, policy_version 1340 (0.0006)
371
+ [2024-11-12 19:55:26,883][4080811] Updated weights for policy 0, policy_version 1350 (0.0007)
372
+ [2024-11-12 19:55:28,176][4080811] Updated weights for policy 0, policy_version 1360 (0.0007)
373
+ [2024-11-12 19:55:29,498][4080811] Updated weights for policy 0, policy_version 1370 (0.0006)
374
+ [2024-11-12 19:55:30,321][4080366] Fps is (10 sec: 31539.2, 60 sec: 31539.2, 300 sec: 30465.5). Total num frames: 5636096. Throughput: 0: 7906.9. Samples: 1391426. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
375
+ [2024-11-12 19:55:30,322][4080366] Avg episode reward: [(0, '24.751')]
376
+ [2024-11-12 19:55:30,324][4080798] Saving new best policy, reward=24.751!
377
+ [2024-11-12 19:55:30,798][4080811] Updated weights for policy 0, policy_version 1380 (0.0006)
378
+ [2024-11-12 19:55:32,108][4080811] Updated weights for policy 0, policy_version 1390 (0.0007)
379
+ [2024-11-12 19:55:33,403][4080811] Updated weights for policy 0, policy_version 1400 (0.0007)
380
+ [2024-11-12 19:55:34,729][4080811] Updated weights for policy 0, policy_version 1410 (0.0007)
381
+ [2024-11-12 19:55:35,321][4080366] Fps is (10 sec: 31130.0, 60 sec: 31471.0, 300 sec: 30483.0). Total num frames: 5791744. Throughput: 0: 7888.5. Samples: 1438410. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
382
+ [2024-11-12 19:55:35,322][4080366] Avg episode reward: [(0, '24.579')]
383
+ [2024-11-12 19:55:36,035][4080811] Updated weights for policy 0, policy_version 1420 (0.0006)
384
+ [2024-11-12 19:55:37,363][4080811] Updated weights for policy 0, policy_version 1430 (0.0008)
385
+ [2024-11-12 19:55:38,694][4080811] Updated weights for policy 0, policy_version 1440 (0.0006)
386
+ [2024-11-12 19:55:40,009][4080811] Updated weights for policy 0, policy_version 1450 (0.0007)
387
+ [2024-11-12 19:55:40,321][4080366] Fps is (10 sec: 31129.0, 60 sec: 31539.2, 300 sec: 30499.5). Total num frames: 5947392. Throughput: 0: 7865.7. Samples: 1485082. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
388
+ [2024-11-12 19:55:40,322][4080366] Avg episode reward: [(0, '23.786')]
389
+ [2024-11-12 19:55:41,320][4080811] Updated weights for policy 0, policy_version 1460 (0.0007)
390
+ [2024-11-12 19:55:42,606][4080811] Updated weights for policy 0, policy_version 1470 (0.0006)
391
+ [2024-11-12 19:55:43,928][4080811] Updated weights for policy 0, policy_version 1480 (0.0006)
392
+ [2024-11-12 19:55:45,255][4080811] Updated weights for policy 0, policy_version 1490 (0.0006)
393
+ [2024-11-12 19:55:45,321][4080366] Fps is (10 sec: 31129.5, 60 sec: 31470.9, 300 sec: 30515.3). Total num frames: 6103040. Throughput: 0: 7862.3. Samples: 1508594. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
394
+ [2024-11-12 19:55:45,322][4080366] Avg episode reward: [(0, '28.179')]
395
+ [2024-11-12 19:55:45,322][4080798] Saving new best policy, reward=28.179!
396
+ [2024-11-12 19:55:46,529][4080811] Updated weights for policy 0, policy_version 1500 (0.0007)
397
+ [2024-11-12 19:55:47,851][4080811] Updated weights for policy 0, policy_version 1510 (0.0007)
398
+ [2024-11-12 19:55:49,121][4080811] Updated weights for policy 0, policy_version 1520 (0.0007)
399
+ [2024-11-12 19:55:50,321][4080366] Fps is (10 sec: 31539.8, 60 sec: 31539.3, 300 sec: 30550.2). Total num frames: 6262784. Throughput: 0: 7844.0. Samples: 1555602. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
400
+ [2024-11-12 19:55:50,322][4080366] Avg episode reward: [(0, '21.492')]
401
+ [2024-11-12 19:55:50,440][4080811] Updated weights for policy 0, policy_version 1530 (0.0007)
402
+ [2024-11-12 19:55:51,748][4080811] Updated weights for policy 0, policy_version 1540 (0.0007)
403
+ [2024-11-12 19:55:53,031][4080811] Updated weights for policy 0, policy_version 1550 (0.0007)
404
+ [2024-11-12 19:55:54,350][4080811] Updated weights for policy 0, policy_version 1560 (0.0008)
405
+ [2024-11-12 19:55:55,321][4080366] Fps is (10 sec: 31538.7, 60 sec: 31402.7, 300 sec: 30564.0). Total num frames: 6418432. Throughput: 0: 7852.9. Samples: 1602972. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
406
+ [2024-11-12 19:55:55,322][4080366] Avg episode reward: [(0, '24.670')]
407
+ [2024-11-12 19:55:55,614][4080811] Updated weights for policy 0, policy_version 1570 (0.0007)
408
+ [2024-11-12 19:55:56,939][4080811] Updated weights for policy 0, policy_version 1580 (0.0006)
409
+ [2024-11-12 19:55:58,251][4080811] Updated weights for policy 0, policy_version 1590 (0.0008)
410
+ [2024-11-12 19:55:59,514][4080811] Updated weights for policy 0, policy_version 1600 (0.0006)
411
+ [2024-11-12 19:56:00,321][4080366] Fps is (10 sec: 31539.0, 60 sec: 31471.0, 300 sec: 30596.2). Total num frames: 6578176. Throughput: 0: 7860.6. Samples: 1626618. Policy #0 lag: (min: 0.0, avg: 0.3, max: 2.0)
412
+ [2024-11-12 19:56:00,322][4080366] Avg episode reward: [(0, '25.765')]
413
+ [2024-11-12 19:56:00,806][4080811] Updated weights for policy 0, policy_version 1610 (0.0007)
414
+ [2024-11-12 19:56:02,064][4080811] Updated weights for policy 0, policy_version 1620 (0.0007)
415
+ [2024-11-12 19:56:03,347][4080811] Updated weights for policy 0, policy_version 1630 (0.0007)
416
+ [2024-11-12 19:56:04,649][4080811] Updated weights for policy 0, policy_version 1640 (0.0007)
417
+ [2024-11-12 19:56:05,321][4080366] Fps is (10 sec: 31948.1, 60 sec: 31470.8, 300 sec: 30626.9). Total num frames: 6737920. Throughput: 0: 7869.8. Samples: 1674572. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
418
+ [2024-11-12 19:56:05,323][4080366] Avg episode reward: [(0, '25.263')]
419
+ [2024-11-12 19:56:05,945][4080811] Updated weights for policy 0, policy_version 1650 (0.0008)
420
+ [2024-11-12 19:56:07,254][4080811] Updated weights for policy 0, policy_version 1660 (0.0007)
421
+ [2024-11-12 19:56:08,561][4080811] Updated weights for policy 0, policy_version 1670 (0.0006)
422
+ [2024-11-12 19:56:09,851][4080811] Updated weights for policy 0, policy_version 1680 (0.0007)
423
+ [2024-11-12 19:56:10,321][4080366] Fps is (10 sec: 31539.4, 60 sec: 31470.9, 300 sec: 30638.2). Total num frames: 6893568. Throughput: 0: 7862.1. Samples: 1721640. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
424
+ [2024-11-12 19:56:10,322][4080366] Avg episode reward: [(0, '22.771')]
425
+ [2024-11-12 19:56:11,208][4080811] Updated weights for policy 0, policy_version 1690 (0.0007)
426
+ [2024-11-12 19:56:12,536][4080811] Updated weights for policy 0, policy_version 1700 (0.0007)
427
+ [2024-11-12 19:56:13,858][4080811] Updated weights for policy 0, policy_version 1710 (0.0007)
428
+ [2024-11-12 19:56:15,150][4080811] Updated weights for policy 0, policy_version 1720 (0.0007)
429
+ [2024-11-12 19:56:15,321][4080366] Fps is (10 sec: 31130.5, 60 sec: 31471.1, 300 sec: 30648.8). Total num frames: 7049216. Throughput: 0: 7850.2. Samples: 1744686. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
430
+ [2024-11-12 19:56:15,322][4080366] Avg episode reward: [(0, '26.287')]
431
+ [2024-11-12 19:56:16,466][4080811] Updated weights for policy 0, policy_version 1730 (0.0007)
432
+ [2024-11-12 19:56:17,754][4080811] Updated weights for policy 0, policy_version 1740 (0.0007)
433
+ [2024-11-12 19:56:19,056][4080811] Updated weights for policy 0, policy_version 1750 (0.0007)
434
+ [2024-11-12 19:56:20,321][4080366] Fps is (10 sec: 30719.3, 60 sec: 31334.3, 300 sec: 30641.6). Total num frames: 7200768. Throughput: 0: 7853.4. Samples: 1791816. Policy #0 lag: (min: 0.0, avg: 0.2, max: 1.0)
435
+ [2024-11-12 19:56:20,323][4080366] Avg episode reward: [(0, '22.495')]
436
+ [2024-11-12 19:56:20,327][4080798] Saving /media/kemove/17a64fef-179c-4620-a965-511df0584b38/home/yunpeng/transformers/deep-rl-class-main/notebooks/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000001758_7200768.pth...
437
+ [2024-11-12 19:56:20,568][4080811] Updated weights for policy 0, policy_version 1760 (0.0008)
438
+ [2024-11-12 19:56:21,938][4080811] Updated weights for policy 0, policy_version 1770 (0.0006)
439
+ [2024-11-12 19:56:23,176][4080811] Updated weights for policy 0, policy_version 1780 (0.0005)
440
+ [2024-11-12 19:56:24,457][4080811] Updated weights for policy 0, policy_version 1790 (0.0006)
441
+ [2024-11-12 19:56:25,321][4080366] Fps is (10 sec: 31128.9, 60 sec: 31334.3, 300 sec: 30668.8). Total num frames: 7360512. Throughput: 0: 7845.4. Samples: 1838128. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
442
+ [2024-11-12 19:56:25,323][4080366] Avg episode reward: [(0, '22.629')]
443
+ [2024-11-12 19:56:25,604][4080811] Updated weights for policy 0, policy_version 1800 (0.0005)
444
+ [2024-11-12 19:56:26,790][4080811] Updated weights for policy 0, policy_version 1810 (0.0005)
445
+ [2024-11-12 19:56:27,987][4080811] Updated weights for policy 0, policy_version 1820 (0.0005)
446
+ [2024-11-12 19:56:29,154][4080811] Updated weights for policy 0, policy_version 1830 (0.0005)
447
+ [2024-11-12 19:56:30,298][4080811] Updated weights for policy 0, policy_version 1840 (0.0005)
448
+ [2024-11-12 19:56:30,321][4080366] Fps is (10 sec: 33586.9, 60 sec: 31675.6, 300 sec: 30761.8). Total num frames: 7536640. Throughput: 0: 7897.6. Samples: 1863986. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
449
+ [2024-11-12 19:56:30,323][4080366] Avg episode reward: [(0, '24.512')]
450
+ [2024-11-12 19:56:31,516][4080811] Updated weights for policy 0, policy_version 1850 (0.0006)
451
+ [2024-11-12 19:56:32,677][4080811] Updated weights for policy 0, policy_version 1860 (0.0005)
452
+ [2024-11-12 19:56:33,829][4080811] Updated weights for policy 0, policy_version 1870 (0.0005)
453
+ [2024-11-12 19:56:35,067][4080811] Updated weights for policy 0, policy_version 1880 (0.0005)
454
+ [2024-11-12 19:56:35,321][4080366] Fps is (10 sec: 34816.2, 60 sec: 31948.7, 300 sec: 30834.7). Total num frames: 7708672. Throughput: 0: 8019.2. Samples: 1916466. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
455
+ [2024-11-12 19:56:35,322][4080366] Avg episode reward: [(0, '21.457')]
456
+ [2024-11-12 19:56:36,268][4080811] Updated weights for policy 0, policy_version 1890 (0.0005)
457
+ [2024-11-12 19:56:37,412][4080811] Updated weights for policy 0, policy_version 1900 (0.0005)
458
+ [2024-11-12 19:56:38,596][4080811] Updated weights for policy 0, policy_version 1910 (0.0006)
459
+ [2024-11-12 19:56:39,803][4080811] Updated weights for policy 0, policy_version 1920 (0.0006)
460
+ [2024-11-12 19:56:40,321][4080366] Fps is (10 sec: 34407.6, 60 sec: 32222.0, 300 sec: 30904.8). Total num frames: 7880704. Throughput: 0: 8111.2. Samples: 1967976. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
461
+ [2024-11-12 19:56:40,322][4080366] Avg episode reward: [(0, '26.030')]
462
+ [2024-11-12 19:56:40,995][4080811] Updated weights for policy 0, policy_version 1930 (0.0006)
463
+ [2024-11-12 19:56:42,161][4080811] Updated weights for policy 0, policy_version 1940 (0.0005)
464
+ [2024-11-12 19:56:43,354][4080811] Updated weights for policy 0, policy_version 1950 (0.0006)
465
+ [2024-11-12 19:56:43,960][4080798] Stopping Batcher_0...
466
+ [2024-11-12 19:56:43,961][4080798] Loop batcher_evt_loop terminating...
467
+ [2024-11-12 19:56:43,960][4080366] Component Batcher_0 stopped!
468
+ [2024-11-12 19:56:43,961][4080798] Saving /media/kemove/17a64fef-179c-4620-a965-511df0584b38/home/yunpeng/transformers/deep-rl-class-main/notebooks/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000001955_8007680.pth...
469
+ [2024-11-12 19:56:43,962][4080366] Component RolloutWorker_w0 process died already! Don't wait for it.
470
+ [2024-11-12 19:56:43,962][4080366] Component RolloutWorker_w2 process died already! Don't wait for it.
471
+ [2024-11-12 19:56:43,987][4080811] Weights refcount: 2 0
472
+ [2024-11-12 19:56:43,989][4080811] Stopping InferenceWorker_p0-w0...
473
+ [2024-11-12 19:56:43,990][4080811] Loop inference_proc0-0_evt_loop terminating...
474
+ [2024-11-12 19:56:43,990][4080366] Component InferenceWorker_p0-w0 stopped!
475
+ [2024-11-12 19:56:43,999][4080815] Stopping RolloutWorker_w3...
476
+ [2024-11-12 19:56:43,999][4080812] Stopping RolloutWorker_w1...
477
+ [2024-11-12 19:56:44,000][4080815] Loop rollout_proc3_evt_loop terminating...
478
+ [2024-11-12 19:56:44,000][4080812] Loop rollout_proc1_evt_loop terminating...
479
+ [2024-11-12 19:56:44,000][4080817] Stopping RolloutWorker_w4...
480
+ [2024-11-12 19:56:44,000][4080819] Stopping RolloutWorker_w7...
481
+ [2024-11-12 19:56:44,000][4080818] Stopping RolloutWorker_w6...
482
+ [2024-11-12 19:56:44,001][4080819] Loop rollout_proc7_evt_loop terminating...
483
+ [2024-11-12 19:56:44,001][4080817] Loop rollout_proc4_evt_loop terminating...
484
+ [2024-11-12 19:56:44,001][4080816] Stopping RolloutWorker_w5...
485
+ [2024-11-12 19:56:44,001][4080818] Loop rollout_proc6_evt_loop terminating...
486
+ [2024-11-12 19:56:44,001][4080816] Loop rollout_proc5_evt_loop terminating...
487
+ [2024-11-12 19:56:43,999][4080366] Component RolloutWorker_w3 stopped!
488
+ [2024-11-12 19:56:44,002][4080366] Component RolloutWorker_w1 stopped!
489
+ [2024-11-12 19:56:44,003][4080366] Component RolloutWorker_w4 stopped!
490
+ [2024-11-12 19:56:44,003][4080366] Component RolloutWorker_w7 stopped!
491
+ [2024-11-12 19:56:44,004][4080366] Component RolloutWorker_w6 stopped!
492
+ [2024-11-12 19:56:44,005][4080366] Component RolloutWorker_w5 stopped!
493
+ [2024-11-12 19:56:44,046][4080798] Removing /media/kemove/17a64fef-179c-4620-a965-511df0584b38/home/yunpeng/transformers/deep-rl-class-main/notebooks/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000836_3424256.pth
494
+ [2024-11-12 19:56:44,057][4080798] Saving /media/kemove/17a64fef-179c-4620-a965-511df0584b38/home/yunpeng/transformers/deep-rl-class-main/notebooks/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000001955_8007680.pth...
495
+ [2024-11-12 19:56:44,488][4080798] Stopping LearnerWorker_p0...
496
+ [2024-11-12 19:56:44,489][4080798] Loop learner_proc0_evt_loop terminating...
497
+ [2024-11-12 19:56:44,489][4080366] Component LearnerWorker_p0 stopped!
498
+ [2024-11-12 19:56:44,490][4080366] Waiting for process learner_proc0 to stop...
499
+ [2024-11-12 19:56:45,109][4080366] Waiting for process inference_proc0-0 to join...
500
+ [2024-11-12 19:56:45,110][4080366] Waiting for process rollout_proc0 to join...
501
+ [2024-11-12 19:56:45,110][4080366] Waiting for process rollout_proc1 to join...
502
+ [2024-11-12 19:56:45,111][4080366] Waiting for process rollout_proc2 to join...
503
+ [2024-11-12 19:56:45,111][4080366] Waiting for process rollout_proc3 to join...
504
+ [2024-11-12 19:56:45,111][4080366] Waiting for process rollout_proc4 to join...
505
+ [2024-11-12 19:56:45,111][4080366] Waiting for process rollout_proc5 to join...
506
+ [2024-11-12 19:56:45,111][4080366] Waiting for process rollout_proc6 to join...
507
+ [2024-11-12 19:56:45,112][4080366] Waiting for process rollout_proc7 to join...
508
+ [2024-11-12 19:56:45,112][4080366] Batcher 0 profile tree view:
509
+ batching: 26.9027, releasing_batches: 0.0357
510
+ [2024-11-12 19:56:45,112][4080366] InferenceWorker_p0-w0 profile tree view:
511
+ wait_policy: 0.0000
512
+ wait_policy_total: 3.7839
513
+ update_model: 3.9104
514
+ weight_update: 0.0005
515
+ one_step: 0.0020
516
+ handle_policy_step: 233.9468
517
+ deserialize: 12.5786, stack: 1.3074, obs_to_device_normalize: 59.5991, forward: 114.8215, send_messages: 10.9577
518
+ prepare_outputs: 25.3487
519
+ to_cpu: 14.6066
520
+ [2024-11-12 19:56:45,112][4080366] Learner 0 profile tree view:
521
+ misc: 0.0097, prepare_batch: 9.7770
522
+ train: 26.0776
523
+ epoch_init: 0.0065, minibatch_init: 0.0074, losses_postprocess: 0.6240, kl_divergence: 0.5407, after_optimizer: 6.5999
524
+ calculate_losses: 9.5364
525
+ losses_init: 0.0028, forward_head: 0.7589, bptt_initial: 5.6054, tail: 0.6684, advantages_returns: 0.1629, losses: 0.9611
526
+ bptt: 1.2044
527
+ bptt_forward_core: 1.1543
528
+ update: 8.3829
529
+ clip: 0.6208
530
+ [2024-11-12 19:56:45,113][4080366] RolloutWorker_w7 profile tree view:
531
+ wait_for_trajectories: 0.2070, enqueue_policy_requests: 10.1650, env_step: 142.2907, overhead: 12.2160, complete_rollouts: 0.3404
532
+ save_policy_outputs: 10.5431
533
+ split_output_tensors: 4.9354
534
+ [2024-11-12 19:56:45,113][4080366] Loop Runner_EvtLoop terminating...
535
+ [2024-11-12 19:56:45,113][4080366] Runner profile tree view:
536
+ main_loop: 263.5364
537
+ [2024-11-12 19:56:45,113][4080366] Collected {0: 8007680}, FPS: 30385.5
538
+ [2024-11-12 19:57:53,988][4080366] Loading existing experiment configuration from /media/kemove/17a64fef-179c-4620-a965-511df0584b38/home/yunpeng/transformers/deep-rl-class-main/notebooks/unit8/train_dir/default_experiment/config.json
539
+ [2024-11-12 19:57:53,988][4080366] Overriding arg 'num_workers' with value 1 passed from command line
540
+ [2024-11-12 19:57:53,989][4080366] Adding new argument 'no_render'=True that is not in the saved config file!
541
+ [2024-11-12 19:57:53,989][4080366] Adding new argument 'save_video'=True that is not in the saved config file!
542
+ [2024-11-12 19:57:53,989][4080366] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
543
+ [2024-11-12 19:57:53,989][4080366] Adding new argument 'video_name'=None that is not in the saved config file!
544
+ [2024-11-12 19:57:53,990][4080366] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
545
+ [2024-11-12 19:57:53,990][4080366] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
546
+ [2024-11-12 19:57:53,990][4080366] Adding new argument 'push_to_hub'=False that is not in the saved config file!
547
+ [2024-11-12 19:57:53,990][4080366] Adding new argument 'hf_repository'=None that is not in the saved config file!
548
+ [2024-11-12 19:57:53,990][4080366] Adding new argument 'policy_index'=0 that is not in the saved config file!
549
+ [2024-11-12 19:57:53,991][4080366] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
550
+ [2024-11-12 19:57:53,991][4080366] Adding new argument 'train_script'=None that is not in the saved config file!
551
+ [2024-11-12 19:57:53,991][4080366] Adding new argument 'enjoy_script'=None that is not in the saved config file!
552
+ [2024-11-12 19:57:53,991][4080366] Using frameskip 1 and render_action_repeat=4 for evaluation
553
+ [2024-11-12 19:57:54,005][4080366] Doom resolution: 160x120, resize resolution: (128, 72)
554
+ [2024-11-12 19:57:54,007][4080366] RunningMeanStd input shape: (3, 72, 128)
555
+ [2024-11-12 19:57:54,008][4080366] RunningMeanStd input shape: (1,)
556
+ [2024-11-12 19:57:54,013][4080366] ConvEncoder: input_channels=3
557
+ [2024-11-12 19:57:54,079][4080366] Conv encoder output size: 512
558
+ [2024-11-12 19:57:54,079][4080366] Policy head output size: 512
559
+ [2024-11-12 19:57:54,176][4080366] Loading state from checkpoint /media/kemove/17a64fef-179c-4620-a965-511df0584b38/home/yunpeng/transformers/deep-rl-class-main/notebooks/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000001955_8007680.pth...
560
+ [2024-11-12 19:57:54,892][4080366] Num frames 100...
561
+ [2024-11-12 19:57:54,939][4080366] Num frames 200...
562
+ [2024-11-12 19:57:54,997][4080366] Num frames 300...
563
+ [2024-11-12 19:57:55,045][4080366] Num frames 400...
564
+ [2024-11-12 19:57:55,096][4080366] Num frames 500...
565
+ [2024-11-12 19:57:55,141][4080366] Num frames 600...
566
+ [2024-11-12 19:57:55,183][4080366] Num frames 700...
567
+ [2024-11-12 19:57:55,228][4080366] Num frames 800...
568
+ [2024-11-12 19:57:55,308][4080366] Avg episode rewards: #0: 24.640, true rewards: #0: 8.640
569
+ [2024-11-12 19:57:55,310][4080366] Avg episode reward: 24.640, avg true_objective: 8.640
570
+ [2024-11-12 19:57:55,370][4080366] Num frames 900...
571
+ [2024-11-12 19:57:55,417][4080366] Num frames 1000...
572
+ [2024-11-12 19:57:55,461][4080366] Num frames 1100...
573
+ [2024-11-12 19:57:55,505][4080366] Num frames 1200...
574
+ [2024-11-12 19:57:55,549][4080366] Num frames 1300...
575
+ [2024-11-12 19:57:55,591][4080366] Num frames 1400...
576
+ [2024-11-12 19:57:55,632][4080366] Num frames 1500...
577
+ [2024-11-12 19:57:55,674][4080366] Num frames 1600...
578
+ [2024-11-12 19:57:55,716][4080366] Num frames 1700...
579
+ [2024-11-12 19:57:55,763][4080366] Num frames 1800...
580
+ [2024-11-12 19:57:55,806][4080366] Num frames 1900...
581
+ [2024-11-12 19:57:55,849][4080366] Num frames 2000...
582
+ [2024-11-12 19:57:55,895][4080366] Num frames 2100...
583
+ [2024-11-12 19:57:55,941][4080366] Num frames 2200...
584
+ [2024-11-12 19:57:55,992][4080366] Num frames 2300...
585
+ [2024-11-12 19:57:56,071][4080366] Num frames 2400...
586
+ [2024-11-12 19:57:56,122][4080366] Avg episode rewards: #0: 28.000, true rewards: #0: 12.000
587
+ [2024-11-12 19:57:56,124][4080366] Avg episode reward: 28.000, avg true_objective: 12.000
588
+ [2024-11-12 19:57:56,195][4080366] Num frames 2500...
589
+ [2024-11-12 19:57:56,242][4080366] Num frames 2600...
590
+ [2024-11-12 19:57:56,307][4080366] Num frames 2700...
591
+ [2024-11-12 19:57:56,377][4080366] Num frames 2800...
592
+ [2024-11-12 19:57:56,424][4080366] Num frames 2900...
593
+ [2024-11-12 19:57:56,474][4080366] Num frames 3000...
594
+ [2024-11-12 19:57:56,520][4080366] Num frames 3100...
595
+ [2024-11-12 19:57:56,566][4080366] Num frames 3200...
596
+ [2024-11-12 19:57:56,644][4080366] Avg episode rewards: #0: 25.107, true rewards: #0: 10.773
597
+ [2024-11-12 19:57:56,645][4080366] Avg episode reward: 25.107, avg true_objective: 10.773
598
+ [2024-11-12 19:57:56,688][4080366] Num frames 3300...
599
+ [2024-11-12 19:57:56,741][4080366] Num frames 3400...
600
+ [2024-11-12 19:57:56,786][4080366] Num frames 3500...
601
+ [2024-11-12 19:57:56,840][4080366] Num frames 3600...
602
+ [2024-11-12 19:57:56,888][4080366] Num frames 3700...
603
+ [2024-11-12 19:57:56,936][4080366] Num frames 3800...
604
+ [2024-11-12 19:57:56,982][4080366] Num frames 3900...
605
+ [2024-11-12 19:57:57,039][4080366] Avg episode rewards: #0: 23.010, true rewards: #0: 9.760
606
+ [2024-11-12 19:57:57,041][4080366] Avg episode reward: 23.010, avg true_objective: 9.760
607
+ [2024-11-12 19:57:57,144][4080366] Num frames 4000...
608
+ [2024-11-12 19:57:57,197][4080366] Num frames 4100...
609
+ [2024-11-12 19:57:57,243][4080366] Num frames 4200...
610
+ [2024-11-12 19:57:57,303][4080366] Num frames 4300...
611
+ [2024-11-12 19:57:57,354][4080366] Num frames 4400...
612
+ [2024-11-12 19:57:57,398][4080366] Num frames 4500...
613
+ [2024-11-12 19:57:57,443][4080366] Num frames 4600...
614
+ [2024-11-12 19:57:57,491][4080366] Num frames 4700...
615
+ [2024-11-12 19:57:57,535][4080366] Num frames 4800...
616
+ [2024-11-12 19:57:57,579][4080366] Num frames 4900...
617
+ [2024-11-12 19:57:57,623][4080366] Num frames 5000...
618
+ [2024-11-12 19:57:57,673][4080366] Num frames 5100...
619
+ [2024-11-12 19:57:57,734][4080366] Avg episode rewards: #0: 23.640, true rewards: #0: 10.240
620
+ [2024-11-12 19:57:57,739][4080366] Avg episode reward: 23.640, avg true_objective: 10.240
621
+ [2024-11-12 19:57:57,797][4080366] Num frames 5200...
622
+ [2024-11-12 19:57:57,838][4080366] Num frames 5300...
623
+ [2024-11-12 19:57:57,884][4080366] Num frames 5400...
624
+ [2024-11-12 19:57:57,963][4080366] Num frames 5500...
625
+ [2024-11-12 19:57:58,016][4080366] Num frames 5600...
626
+ [2024-11-12 19:57:58,096][4080366] Avg episode rewards: #0: 21.607, true rewards: #0: 9.440
627
+ [2024-11-12 19:57:58,099][4080366] Avg episode reward: 21.607, avg true_objective: 9.440
628
+ [2024-11-12 19:57:58,136][4080366] Num frames 5700...
629
+ [2024-11-12 19:57:58,181][4080366] Num frames 5800...
630
+ [2024-11-12 19:57:58,230][4080366] Num frames 5900...
631
+ [2024-11-12 19:57:58,273][4080366] Num frames 6000...
632
+ [2024-11-12 19:57:58,317][4080366] Num frames 6100...
633
+ [2024-11-12 19:57:58,361][4080366] Num frames 6200...
634
+ [2024-11-12 19:57:58,406][4080366] Num frames 6300...
635
+ [2024-11-12 19:57:58,450][4080366] Num frames 6400...
636
+ [2024-11-12 19:57:58,497][4080366] Num frames 6500...
637
+ [2024-11-12 19:57:58,544][4080366] Num frames 6600...
638
+ [2024-11-12 19:57:58,590][4080366] Num frames 6700...
639
+ [2024-11-12 19:57:58,635][4080366] Num frames 6800...
640
+ [2024-11-12 19:57:58,679][4080366] Num frames 6900...
641
+ [2024-11-12 19:57:58,724][4080366] Num frames 7000...
642
+ [2024-11-12 19:57:58,766][4080366] Num frames 7100...
643
+ [2024-11-12 19:57:58,807][4080366] Num frames 7200...
644
+ [2024-11-12 19:57:58,875][4080366] Avg episode rewards: #0: 24.046, true rewards: #0: 10.331
645
+ [2024-11-12 19:57:58,877][4080366] Avg episode reward: 24.046, avg true_objective: 10.331
646
+ [2024-11-12 19:57:58,932][4080366] Num frames 7300...
647
+ [2024-11-12 19:57:58,981][4080366] Num frames 7400...
648
+ [2024-11-12 19:57:59,038][4080366] Num frames 7500...
649
+ [2024-11-12 19:57:59,082][4080366] Num frames 7600...
650
+ [2024-11-12 19:57:59,125][4080366] Num frames 7700...
651
+ [2024-11-12 19:57:59,168][4080366] Num frames 7800...
652
+ [2024-11-12 19:57:59,228][4080366] Num frames 7900...
653
+ [2024-11-12 19:57:59,270][4080366] Num frames 8000...
654
+ [2024-11-12 19:57:59,314][4080366] Num frames 8100...
655
+ [2024-11-12 19:57:59,360][4080366] Num frames 8200...
656
+ [2024-11-12 19:57:59,406][4080366] Num frames 8300...
657
+ [2024-11-12 19:57:59,451][4080366] Num frames 8400...
658
+ [2024-11-12 19:57:59,524][4080366] Avg episode rewards: #0: 24.935, true rewards: #0: 10.560
659
+ [2024-11-12 19:57:59,526][4080366] Avg episode reward: 24.935, avg true_objective: 10.560
660
+ [2024-11-12 19:57:59,571][4080366] Num frames 8500...
661
+ [2024-11-12 19:57:59,615][4080366] Num frames 8600...
662
+ [2024-11-12 19:57:59,659][4080366] Num frames 8700...
663
+ [2024-11-12 19:57:59,702][4080366] Num frames 8800...
664
+ [2024-11-12 19:57:59,750][4080366] Num frames 8900...
665
+ [2024-11-12 19:57:59,796][4080366] Num frames 9000...
666
+ [2024-11-12 19:57:59,841][4080366] Num frames 9100...
667
+ [2024-11-12 19:57:59,884][4080366] Num frames 9200...
668
+ [2024-11-12 19:57:59,932][4080366] Num frames 9300...
669
+ [2024-11-12 19:57:59,993][4080366] Num frames 9400...
670
+ [2024-11-12 19:58:00,057][4080366] Num frames 9500...
671
+ [2024-11-12 19:58:00,105][4080366] Num frames 9600...
672
+ [2024-11-12 19:58:00,185][4080366] Avg episode rewards: #0: 25.288, true rewards: #0: 10.732
673
+ [2024-11-12 19:58:00,187][4080366] Avg episode reward: 25.288, avg true_objective: 10.732
674
+ [2024-11-12 19:58:00,224][4080366] Num frames 9700...
675
+ [2024-11-12 19:58:00,268][4080366] Num frames 9800...
676
+ [2024-11-12 19:58:00,329][4080366] Avg episode rewards: #0: 23.019, true rewards: #0: 9.819
677
+ [2024-11-12 19:58:00,331][4080366] Avg episode reward: 23.019, avg true_objective: 9.819
678
+ [2024-11-12 19:58:10,093][4080366] Replay video saved to /media/kemove/17a64fef-179c-4620-a965-511df0584b38/home/yunpeng/transformers/deep-rl-class-main/notebooks/unit8/train_dir/default_experiment/replay.mp4!
679
+ [2024-11-12 20:00:58,329][4080366] Loading existing experiment configuration from /media/kemove/17a64fef-179c-4620-a965-511df0584b38/home/yunpeng/transformers/deep-rl-class-main/notebooks/unit8/train_dir/default_experiment/config.json
680
+ [2024-11-12 20:00:58,330][4080366] Overriding arg 'num_workers' with value 1 passed from command line
681
+ [2024-11-12 20:00:58,331][4080366] Adding new argument 'no_render'=True that is not in the saved config file!
682
+ [2024-11-12 20:00:58,332][4080366] Adding new argument 'save_video'=True that is not in the saved config file!
683
+ [2024-11-12 20:00:58,332][4080366] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
684
+ [2024-11-12 20:00:58,333][4080366] Adding new argument 'video_name'=None that is not in the saved config file!
685
+ [2024-11-12 20:00:58,333][4080366] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
686
+ [2024-11-12 20:00:58,334][4080366] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
687
+ [2024-11-12 20:00:58,334][4080366] Adding new argument 'push_to_hub'=True that is not in the saved config file!
688
+ [2024-11-12 20:00:58,335][4080366] Adding new argument 'hf_repository'='sun-s/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
689
+ [2024-11-12 20:00:58,336][4080366] Adding new argument 'policy_index'=0 that is not in the saved config file!
690
+ [2024-11-12 20:00:58,336][4080366] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
691
+ [2024-11-12 20:00:58,337][4080366] Adding new argument 'train_script'=None that is not in the saved config file!
692
+ [2024-11-12 20:00:58,338][4080366] Adding new argument 'enjoy_script'=None that is not in the saved config file!
693
+ [2024-11-12 20:00:58,338][4080366] Using frameskip 1 and render_action_repeat=4 for evaluation
694
+ [2024-11-12 20:00:58,358][4080366] RunningMeanStd input shape: (3, 72, 128)
695
+ [2024-11-12 20:00:58,359][4080366] RunningMeanStd input shape: (1,)
696
+ [2024-11-12 20:00:58,365][4080366] ConvEncoder: input_channels=3
697
+ [2024-11-12 20:00:58,395][4080366] Conv encoder output size: 512
698
+ [2024-11-12 20:00:58,396][4080366] Policy head output size: 512
699
+ [2024-11-12 20:00:58,425][4080366] Loading state from checkpoint /media/kemove/17a64fef-179c-4620-a965-511df0584b38/home/yunpeng/transformers/deep-rl-class-main/notebooks/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000001955_8007680.pth...
700
+ [2024-11-12 20:00:58,917][4080366] Num frames 100...
701
+ [2024-11-12 20:00:58,973][4080366] Num frames 200...
702
+ [2024-11-12 20:00:59,030][4080366] Num frames 300...
703
+ [2024-11-12 20:00:59,082][4080366] Num frames 400...
704
+ [2024-11-12 20:00:59,140][4080366] Num frames 500...
705
+ [2024-11-12 20:00:59,197][4080366] Num frames 600...
706
+ [2024-11-12 20:00:59,249][4080366] Num frames 700...
707
+ [2024-11-12 20:00:59,306][4080366] Num frames 800...
708
+ [2024-11-12 20:00:59,362][4080366] Num frames 900...
709
+ [2024-11-12 20:00:59,415][4080366] Num frames 1000...
710
+ [2024-11-12 20:00:59,469][4080366] Num frames 1100...
711
+ [2024-11-12 20:00:59,518][4080366] Num frames 1200...
712
+ [2024-11-12 20:00:59,567][4080366] Num frames 1300...
713
+ [2024-11-12 20:00:59,619][4080366] Num frames 1400...
714
+ [2024-11-12 20:00:59,709][4080366] Avg episode rewards: #0: 40.760, true rewards: #0: 14.760
715
+ [2024-11-12 20:00:59,710][4080366] Avg episode reward: 40.760, avg true_objective: 14.760
716
+ [2024-11-12 20:00:59,721][4080366] Num frames 1500...
717
+ [2024-11-12 20:00:59,771][4080366] Num frames 1600...
718
+ [2024-11-12 20:00:59,815][4080366] Num frames 1700...
719
+ [2024-11-12 20:00:59,858][4080366] Num frames 1800...
720
+ [2024-11-12 20:00:59,923][4080366] Avg episode rewards: #0: 22.640, true rewards: #0: 9.140
721
+ [2024-11-12 20:00:59,925][4080366] Avg episode reward: 22.640, avg true_objective: 9.140
722
+ [2024-11-12 20:00:59,974][4080366] Num frames 1900...
723
+ [2024-11-12 20:01:00,020][4080366] Num frames 2000...
724
+ [2024-11-12 20:01:00,066][4080366] Num frames 2100...
725
+ [2024-11-12 20:01:00,108][4080366] Num frames 2200...
726
+ [2024-11-12 20:01:00,155][4080366] Num frames 2300...
727
+ [2024-11-12 20:01:00,205][4080366] Num frames 2400...
728
+ [2024-11-12 20:01:00,259][4080366] Num frames 2500...
729
+ [2024-11-12 20:01:00,303][4080366] Num frames 2600...
730
+ [2024-11-12 20:01:00,347][4080366] Num frames 2700...
731
+ [2024-11-12 20:01:00,391][4080366] Num frames 2800...
732
+ [2024-11-12 20:01:00,434][4080366] Num frames 2900...
733
+ [2024-11-12 20:01:00,477][4080366] Num frames 3000...
734
+ [2024-11-12 20:01:00,521][4080366] Num frames 3100...
735
+ [2024-11-12 20:01:00,572][4080366] Num frames 3200...
736
+ [2024-11-12 20:01:00,613][4080366] Num frames 3300...
737
+ [2024-11-12 20:01:00,654][4080366] Num frames 3400...
738
+ [2024-11-12 20:01:00,695][4080366] Num frames 3500...
739
+ [2024-11-12 20:01:00,737][4080366] Num frames 3600...
740
+ [2024-11-12 20:01:00,814][4080366] Avg episode rewards: #0: 30.160, true rewards: #0: 12.160
741
+ [2024-11-12 20:01:00,817][4080366] Avg episode reward: 30.160, avg true_objective: 12.160
742
+ [2024-11-12 20:01:00,892][4080366] Num frames 3700...
743
+ [2024-11-12 20:01:00,939][4080366] Num frames 3800...
744
+ [2024-11-12 20:01:00,985][4080366] Num frames 3900...
745
+ [2024-11-12 20:01:01,026][4080366] Num frames 4000...
746
+ [2024-11-12 20:01:01,095][4080366] Num frames 4100...
747
+ [2024-11-12 20:01:01,142][4080366] Num frames 4200...
748
+ [2024-11-12 20:01:01,189][4080366] Num frames 4300...
749
+ [2024-11-12 20:01:01,232][4080366] Num frames 4400...
750
+ [2024-11-12 20:01:01,315][4080366] Num frames 4500...
751
+ [2024-11-12 20:01:01,358][4080366] Num frames 4600...
752
+ [2024-11-12 20:01:01,400][4080366] Num frames 4700...
753
+ [2024-11-12 20:01:01,441][4080366] Num frames 4800...
754
+ [2024-11-12 20:01:01,507][4080366] Avg episode rewards: #0: 30.080, true rewards: #0: 12.080
755
+ [2024-11-12 20:01:01,509][4080366] Avg episode reward: 30.080, avg true_objective: 12.080
756
+ [2024-11-12 20:01:01,569][4080366] Num frames 4900...
757
+ [2024-11-12 20:01:01,611][4080366] Num frames 5000...
758
+ [2024-11-12 20:01:01,651][4080366] Num frames 5100...
759
+ [2024-11-12 20:01:01,693][4080366] Num frames 5200...
760
+ [2024-11-12 20:01:01,737][4080366] Num frames 5300...
761
+ [2024-11-12 20:01:01,779][4080366] Num frames 5400...
762
+ [2024-11-12 20:01:01,828][4080366] Num frames 5500...
763
+ [2024-11-12 20:01:01,895][4080366] Avg episode rewards: #0: 26.472, true rewards: #0: 11.072
764
+ [2024-11-12 20:01:01,896][4080366] Avg episode reward: 26.472, avg true_objective: 11.072
765
+ [2024-11-12 20:01:01,936][4080366] Num frames 5600...
766
+ [2024-11-12 20:01:01,977][4080366] Num frames 5700...
767
+ [2024-11-12 20:01:02,019][4080366] Num frames 5800...
768
+ [2024-11-12 20:01:02,061][4080366] Num frames 5900...
769
+ [2024-11-12 20:01:02,102][4080366] Num frames 6000...
770
+ [2024-11-12 20:01:02,149][4080366] Num frames 6100...
771
+ [2024-11-12 20:01:02,199][4080366] Num frames 6200...
772
+ [2024-11-12 20:01:02,259][4080366] Num frames 6300...
773
+ [2024-11-12 20:01:02,321][4080366] Avg episode rewards: #0: 24.703, true rewards: #0: 10.537
774
+ [2024-11-12 20:01:02,323][4080366] Avg episode reward: 24.703, avg true_objective: 10.537
775
+ [2024-11-12 20:01:02,369][4080366] Num frames 6400...
776
+ [2024-11-12 20:01:02,414][4080366] Num frames 6500...
777
+ [2024-11-12 20:01:02,456][4080366] Num frames 6600...
778
+ [2024-11-12 20:01:02,497][4080366] Num frames 6700...
779
+ [2024-11-12 20:01:02,538][4080366] Num frames 6800...
780
+ [2024-11-12 20:01:02,626][4080366] Avg episode rewards: #0: 22.551, true rewards: #0: 9.837
781
+ [2024-11-12 20:01:02,628][4080366] Avg episode reward: 22.551, avg true_objective: 9.837
782
+ [2024-11-12 20:01:02,653][4080366] Num frames 6900...
783
+ [2024-11-12 20:01:02,703][4080366] Num frames 7000...
784
+ [2024-11-12 20:01:02,746][4080366] Num frames 7100...
785
+ [2024-11-12 20:01:02,791][4080366] Num frames 7200...
786
+ [2024-11-12 20:01:02,835][4080366] Num frames 7300...
787
+ [2024-11-12 20:01:02,880][4080366] Num frames 7400...
788
+ [2024-11-12 20:01:02,925][4080366] Num frames 7500...
789
+ [2024-11-12 20:01:02,968][4080366] Num frames 7600...
790
+ [2024-11-12 20:01:03,015][4080366] Num frames 7700...
791
+ [2024-11-12 20:01:03,062][4080366] Num frames 7800...
792
+ [2024-11-12 20:01:03,109][4080366] Num frames 7900...
793
+ [2024-11-12 20:01:03,150][4080366] Num frames 8000...
794
+ [2024-11-12 20:01:03,194][4080366] Num frames 8100...
795
+ [2024-11-12 20:01:03,237][4080366] Num frames 8200...
796
+ [2024-11-12 20:01:03,281][4080366] Num frames 8300...
797
+ [2024-11-12 20:01:03,325][4080366] Num frames 8400...
798
+ [2024-11-12 20:01:03,372][4080366] Num frames 8500...
799
+ [2024-11-12 20:01:03,425][4080366] Num frames 8600...
800
+ [2024-11-12 20:01:03,497][4080366] Avg episode rewards: #0: 24.932, true rewards: #0: 10.807
801
+ [2024-11-12 20:01:03,499][4080366] Avg episode reward: 24.932, avg true_objective: 10.807
802
+ [2024-11-12 20:01:03,543][4080366] Num frames 8700...
803
+ [2024-11-12 20:01:03,601][4080366] Num frames 8800...
804
+ [2024-11-12 20:01:03,644][4080366] Num frames 8900...
805
+ [2024-11-12 20:01:03,686][4080366] Num frames 9000...
806
+ [2024-11-12 20:01:03,732][4080366] Num frames 9100...
807
+ [2024-11-12 20:01:03,776][4080366] Num frames 9200...
808
+ [2024-11-12 20:01:03,847][4080366] Num frames 9300...
809
+ [2024-11-12 20:01:03,895][4080366] Num frames 9400...
810
+ [2024-11-12 20:01:03,943][4080366] Num frames 9500...
811
+ [2024-11-12 20:01:03,986][4080366] Num frames 9600...
812
+ [2024-11-12 20:01:04,031][4080366] Num frames 9700...
813
+ [2024-11-12 20:01:04,075][4080366] Num frames 9800...
814
+ [2024-11-12 20:01:04,148][4080366] Avg episode rewards: #0: 25.379, true rewards: #0: 10.934
815
+ [2024-11-12 20:01:04,151][4080366] Avg episode reward: 25.379, avg true_objective: 10.934
816
+ [2024-11-12 20:01:04,226][4080366] Num frames 9900...
817
+ [2024-11-12 20:01:04,273][4080366] Num frames 10000...
818
+ [2024-11-12 20:01:04,316][4080366] Num frames 10100...
819
+ [2024-11-12 20:01:04,358][4080366] Num frames 10200...
820
+ [2024-11-12 20:01:04,400][4080366] Num frames 10300...
821
+ [2024-11-12 20:01:04,443][4080366] Num frames 10400...
822
+ [2024-11-12 20:01:04,485][4080366] Num frames 10500...
823
+ [2024-11-12 20:01:04,529][4080366] Num frames 10600...
824
+ [2024-11-12 20:01:04,570][4080366] Num frames 10700...
825
+ [2024-11-12 20:01:04,613][4080366] Num frames 10800...
826
+ [2024-11-12 20:01:04,680][4080366] Avg episode rewards: #0: 24.633, true rewards: #0: 10.833
827
+ [2024-11-12 20:01:04,682][4080366] Avg episode reward: 24.633, avg true_objective: 10.833
828
+ [2024-11-12 20:01:15,228][4080366] Replay video saved to /media/kemove/17a64fef-179c-4620-a965-511df0584b38/home/yunpeng/transformers/deep-rl-class-main/notebooks/unit8/train_dir/default_experiment/replay.mp4!