|
from share import * |
|
import config |
|
|
|
import cv2 |
|
import einops |
|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
import random |
|
|
|
from pytorch_lightning import seed_everything |
|
from annotator.util import resize_image, HWC3 |
|
from cldm.model import create_model, load_state_dict |
|
from cldm.ddim_hacked import DDIMSampler |
|
from icecream import ic |
|
import matplotlib.pyplot as plt |
|
import sys |
|
import matplotlib |
|
matplotlib.use('Agg') |
|
model = create_model('./models/cldm_v15.yaml').cpu() |
|
model.load_state_dict(load_state_dict('./farfetch_controlnet.ckpt', location='cuda')) |
|
model = model.cuda() |
|
ddim_sampler = DDIMSampler(model) |
|
sys.path.append("..") |
|
from segment_anything import sam_model_registry, SamPredictor |
|
|
|
def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta): |
|
with torch.no_grad(): |
|
img = resize_image(HWC3(input_image), image_resolution) |
|
H, W, C = img.shape |
|
|
|
detected_map = np.zeros_like(img, dtype=np.uint8) |
|
detected_map[np.min(img, axis=2) < 127] = 255 |
|
|
|
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 |
|
control = torch.stack([control for _ in range(num_samples)], dim=0) |
|
control = einops.rearrange(control, 'b h w c -> b c h w').clone() |
|
|
|
if seed == -1: |
|
seed = random.randint(0, 65535) |
|
seed_everything(seed) |
|
|
|
if config.save_memory: |
|
model.low_vram_shift(is_diffusing=False) |
|
|
|
cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]} |
|
un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]} |
|
shape = (4, H // 8, W // 8) |
|
|
|
if config.save_memory: |
|
model.low_vram_shift(is_diffusing=True) |
|
|
|
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) |
|
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, |
|
shape, cond, verbose=False, eta=eta, |
|
unconditional_guidance_scale=scale, |
|
unconditional_conditioning=un_cond) |
|
|
|
if config.save_memory: |
|
model.low_vram_shift(is_diffusing=False) |
|
|
|
x_samples = model.decode_first_stage(samples) |
|
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) |
|
|
|
results = [x_samples[i] for i in range(num_samples)] |
|
ic((x_samples[0])) |
|
ic(results) |
|
return [255 - detected_map] + results |
|
|
|
def segment_anything(input_image, model_type="vit_h", device="cuda"): |
|
""" |
|
处理图像,应用SAM模型,生成并保存处理后的图像。 |
|
|
|
参数: |
|
- input_image: 输入图像的numpy数组。 |
|
- sam_checkpoint: SAM模型的路径。 |
|
- model_type: 模型类型,默认为"vit_h"。 |
|
- device: 运行设备,默认为"cuda"。 |
|
""" |
|
for i in input_image: |
|
ic(type(i)) |
|
ic(i) |
|
|
|
sam_checkpoint="./sam_vit_h_4b8939.pth" |
|
|
|
sys.path.append("..") |
|
from segment_anything import sam_model_registry, SamPredictor |
|
|
|
|
|
image_path=input_image[-1]['name'] |
|
image = cv2.imread(image_path) |
|
input_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
if input_image.shape[2] == 3: |
|
image = input_image |
|
else: |
|
raise ValueError("Input image must be in RGB format.") |
|
|
|
|
|
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) |
|
sam.to(device=device) |
|
|
|
|
|
predictor = SamPredictor(sam) |
|
predictor.set_image(image) |
|
|
|
|
|
input_point = np.array([[280, 280], [220, 220]]) |
|
input_label = np.array([1, 1]) |
|
|
|
|
|
masks, _, _ = predictor.predict( |
|
point_coords=input_point, |
|
point_labels=input_label, |
|
multimask_output=False, |
|
) |
|
|
|
|
|
segmentation_mask = masks[0] |
|
binary_mask = np.where(segmentation_mask > 0.5, 1, 0) |
|
|
|
|
|
white_background = np.ones_like(image) * 255 |
|
binary_mask = cv2.GaussianBlur(binary_mask.astype(np.float32), (15, 15), 0) |
|
new_image = white_background * (1 - binary_mask[..., np.newaxis]) + image * binary_mask[..., np.newaxis] |
|
ic(new_image) |
|
|
|
|
|
|
|
|
|
new_image = new_image.clip(0, 255).astype(np.uint8) |
|
|
|
|
|
|
|
|
|
return [new_image] |
|
|
|
|
|
|
|
|
|
block = gr.Blocks().queue() |
|
with block: |
|
with gr.Row(): |
|
gr.Markdown("## Control Stable Diffusion with farfetch") |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(source='upload', type="numpy") |
|
prompt = gr.Textbox(label="Prompt") |
|
run_button = gr.Button(label="Run") |
|
sam_button=gr.Button("Sam") |
|
with gr.Accordion("Advanced options", open=False): |
|
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) |
|
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64) |
|
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) |
|
guess_mode = gr.Checkbox(label='Guess Mode', value=False) |
|
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1) |
|
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) |
|
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) |
|
eta = gr.Number(label="eta (DDIM)", value=0.0) |
|
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed') |
|
n_prompt = gr.Textbox(label="Negative Prompt", |
|
value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality') |
|
with gr.Column(): |
|
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto') |
|
with gr.Row(): |
|
sam_output= gr.Gallery(label='sam_Output', show_label=False, elem_id="gallery").style(grid=2, height='auto') |
|
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta] |
|
run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) |
|
sam_button.click(fn=segment_anything,inputs=[result_gallery],outputs=[sam_output]) |
|
|
|
block.launch(server_name='0.0.0.0',share=True) |
|
|