File size: 37,780 Bytes
e13f5a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 |
import os
from typing import Any, List, Tuple, Optional, Union, Dict
import accelerate
from einops import rearrange
import torch
import torch.nn as nn
from torch.utils.checkpoint import checkpoint
from .activation_layers import get_activation_layer
from .norm_layers import get_norm_layer
from .embed_layers import TimestepEmbedder, PatchEmbed, TextProjection
from .attention import attention, parallel_attention, get_cu_seqlens
from .posemb_layers import apply_rotary_emb
from .mlp_layers import MLP, MLPEmbedder, FinalLayer
from .modulate_layers import ModulateDiT, modulate, apply_gate
from .token_refiner import SingleTokenRefiner
from modules.custom_offloading_utils import ModelOffloader, synchronize_device, clean_memory_on_device
from hunyuan_model.posemb_layers import get_nd_rotary_pos_embed
from utils.safetensors_utils import MemoryEfficientSafeOpen
class MMDoubleStreamBlock(nn.Module):
"""
A multimodal dit block with seperate modulation for
text and image/video, see more details (SD3): https://arxiv.org/abs/2403.03206
(Flux.1): https://github.com/black-forest-labs/flux
"""
def __init__(
self,
hidden_size: int,
heads_num: int,
mlp_width_ratio: float,
mlp_act_type: str = "gelu_tanh",
qk_norm: bool = True,
qk_norm_type: str = "rms",
qkv_bias: bool = False,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
attn_mode: str = "flash",
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.attn_mode = attn_mode
self.deterministic = False
self.heads_num = heads_num
head_dim = hidden_size // heads_num
mlp_hidden_dim = int(hidden_size * mlp_width_ratio)
self.img_mod = ModulateDiT(
hidden_size,
factor=6,
act_layer=get_activation_layer("silu"),
**factory_kwargs,
)
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
self.img_attn_qkv = nn.Linear(hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs)
qk_norm_layer = get_norm_layer(qk_norm_type)
self.img_attn_q_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
)
self.img_attn_k_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
)
self.img_attn_proj = nn.Linear(hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs)
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
self.img_mlp = MLP(
hidden_size,
mlp_hidden_dim,
act_layer=get_activation_layer(mlp_act_type),
bias=True,
**factory_kwargs,
)
self.txt_mod = ModulateDiT(
hidden_size,
factor=6,
act_layer=get_activation_layer("silu"),
**factory_kwargs,
)
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
self.txt_attn_qkv = nn.Linear(hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs)
self.txt_attn_q_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
)
self.txt_attn_k_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
)
self.txt_attn_proj = nn.Linear(hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs)
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
self.txt_mlp = MLP(
hidden_size,
mlp_hidden_dim,
act_layer=get_activation_layer(mlp_act_type),
bias=True,
**factory_kwargs,
)
self.hybrid_seq_parallel_attn = None
self.gradient_checkpointing = False
def enable_deterministic(self):
self.deterministic = True
def disable_deterministic(self):
self.deterministic = False
def enable_gradient_checkpointing(self):
self.gradient_checkpointing = True
def _forward(
self,
img: torch.Tensor,
txt: torch.Tensor,
vec: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
cu_seqlens_q: Optional[torch.Tensor] = None,
cu_seqlens_kv: Optional[torch.Tensor] = None,
max_seqlen_q: Optional[int] = None,
max_seqlen_kv: Optional[int] = None,
freqs_cis: tuple = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
(img_mod1_shift, img_mod1_scale, img_mod1_gate, img_mod2_shift, img_mod2_scale, img_mod2_gate) = self.img_mod(vec).chunk(
6, dim=-1
)
(txt_mod1_shift, txt_mod1_scale, txt_mod1_gate, txt_mod2_shift, txt_mod2_scale, txt_mod2_gate) = self.txt_mod(vec).chunk(
6, dim=-1
)
# Prepare image for attention.
img_modulated = self.img_norm1(img)
img_modulated = modulate(img_modulated, shift=img_mod1_shift, scale=img_mod1_scale)
img_qkv = self.img_attn_qkv(img_modulated)
img_modulated = None
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num)
img_qkv = None
# Apply QK-Norm if needed
img_q = self.img_attn_q_norm(img_q).to(img_v)
img_k = self.img_attn_k_norm(img_k).to(img_v)
# Apply RoPE if needed.
if freqs_cis is not None:
img_q_shape = img_q.shape
img_k_shape = img_k.shape
img_q, img_k = apply_rotary_emb(img_q, img_k, freqs_cis, head_first=False)
assert (
img_q.shape == img_q_shape and img_k.shape == img_k_shape
), f"img_kk: {img_q.shape}, img_q: {img_q_shape}, img_kk: {img_k.shape}, img_k: {img_k_shape}"
# img_q, img_k = img_qq, img_kk
# Prepare txt for attention.
txt_modulated = self.txt_norm1(txt)
txt_modulated = modulate(txt_modulated, shift=txt_mod1_shift, scale=txt_mod1_scale)
txt_qkv = self.txt_attn_qkv(txt_modulated)
txt_modulated = None
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num)
txt_qkv = None
# Apply QK-Norm if needed.
txt_q = self.txt_attn_q_norm(txt_q).to(txt_v)
txt_k = self.txt_attn_k_norm(txt_k).to(txt_v)
# Run actual attention.
img_q_len = img_q.shape[1]
img_kv_len = img_k.shape[1]
batch_size = img_k.shape[0]
q = torch.cat((img_q, txt_q), dim=1)
img_q = txt_q = None
k = torch.cat((img_k, txt_k), dim=1)
img_k = txt_k = None
v = torch.cat((img_v, txt_v), dim=1)
img_v = txt_v = None
assert (
cu_seqlens_q.shape[0] == 2 * img.shape[0] + 1
), f"cu_seqlens_q.shape:{cu_seqlens_q.shape}, img.shape[0]:{img.shape[0]}"
# attention computation start
if not self.hybrid_seq_parallel_attn:
l = [q, k, v]
q = k = v = None
attn = attention(
l,
mode=self.attn_mode,
attn_mask=attn_mask,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_kv=cu_seqlens_kv,
max_seqlen_q=max_seqlen_q,
max_seqlen_kv=max_seqlen_kv,
batch_size=batch_size,
)
else:
attn = parallel_attention(
self.hybrid_seq_parallel_attn,
q,
k,
v,
img_q_len=img_q_len,
img_kv_len=img_kv_len,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_kv=cu_seqlens_kv,
)
# attention computation end
img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1] :]
attn = None
# Calculate the img bloks.
img = img + apply_gate(self.img_attn_proj(img_attn), gate=img_mod1_gate)
img_attn = None
img = img + apply_gate(
self.img_mlp(modulate(self.img_norm2(img), shift=img_mod2_shift, scale=img_mod2_scale)),
gate=img_mod2_gate,
)
# Calculate the txt bloks.
txt = txt + apply_gate(self.txt_attn_proj(txt_attn), gate=txt_mod1_gate)
txt_attn = None
txt = txt + apply_gate(
self.txt_mlp(modulate(self.txt_norm2(txt), shift=txt_mod2_shift, scale=txt_mod2_scale)),
gate=txt_mod2_gate,
)
return img, txt
# def forward(
# self,
# img: torch.Tensor,
# txt: torch.Tensor,
# vec: torch.Tensor,
# attn_mask: Optional[torch.Tensor] = None,
# cu_seqlens_q: Optional[torch.Tensor] = None,
# cu_seqlens_kv: Optional[torch.Tensor] = None,
# max_seqlen_q: Optional[int] = None,
# max_seqlen_kv: Optional[int] = None,
# freqs_cis: Tuple[torch.Tensor, torch.Tensor] = None,
# ) -> Tuple[torch.Tensor, torch.Tensor]:
def forward(self, *args, **kwargs):
if self.training and self.gradient_checkpointing:
return checkpoint(self._forward, *args, use_reentrant=False, **kwargs)
else:
return self._forward(*args, **kwargs)
class MMSingleStreamBlock(nn.Module):
"""
A DiT block with parallel linear layers as described in
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
Also refer to (SD3): https://arxiv.org/abs/2403.03206
(Flux.1): https://github.com/black-forest-labs/flux
"""
def __init__(
self,
hidden_size: int,
heads_num: int,
mlp_width_ratio: float = 4.0,
mlp_act_type: str = "gelu_tanh",
qk_norm: bool = True,
qk_norm_type: str = "rms",
qk_scale: float = None,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
attn_mode: str = "flash",
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.attn_mode = attn_mode
self.deterministic = False
self.hidden_size = hidden_size
self.heads_num = heads_num
head_dim = hidden_size // heads_num
mlp_hidden_dim = int(hidden_size * mlp_width_ratio)
self.mlp_hidden_dim = mlp_hidden_dim
self.scale = qk_scale or head_dim**-0.5
# qkv and mlp_in
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + mlp_hidden_dim, **factory_kwargs)
# proj and mlp_out
self.linear2 = nn.Linear(hidden_size + mlp_hidden_dim, hidden_size, **factory_kwargs)
qk_norm_layer = get_norm_layer(qk_norm_type)
self.q_norm = qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
self.k_norm = qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
self.mlp_act = get_activation_layer(mlp_act_type)()
self.modulation = ModulateDiT(hidden_size, factor=3, act_layer=get_activation_layer("silu"), **factory_kwargs)
self.hybrid_seq_parallel_attn = None
self.gradient_checkpointing = False
def enable_deterministic(self):
self.deterministic = True
def disable_deterministic(self):
self.deterministic = False
def enable_gradient_checkpointing(self):
self.gradient_checkpointing = True
def _forward(
self,
x: torch.Tensor,
vec: torch.Tensor,
txt_len: int,
attn_mask: Optional[torch.Tensor] = None,
cu_seqlens_q: Optional[torch.Tensor] = None,
cu_seqlens_kv: Optional[torch.Tensor] = None,
max_seqlen_q: Optional[int] = None,
max_seqlen_kv: Optional[int] = None,
freqs_cis: Tuple[torch.Tensor, torch.Tensor] = None,
) -> torch.Tensor:
mod_shift, mod_scale, mod_gate = self.modulation(vec).chunk(3, dim=-1)
x_mod = modulate(self.pre_norm(x), shift=mod_shift, scale=mod_scale)
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
x_mod = None
# mlp = mlp.to("cpu", non_blocking=True)
# clean_memory_on_device(x.device)
q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num)
qkv = None
# Apply QK-Norm if needed.
q = self.q_norm(q).to(v)
k = self.k_norm(k).to(v)
# Apply RoPE if needed.
if freqs_cis is not None:
img_q, txt_q = q[:, :-txt_len, :, :], q[:, -txt_len:, :, :]
img_k, txt_k = k[:, :-txt_len, :, :], k[:, -txt_len:, :, :]
q = k = None
img_q_shape = img_q.shape
img_k_shape = img_k.shape
img_q, img_k = apply_rotary_emb(img_q, img_k, freqs_cis, head_first=False)
assert (
img_q.shape == img_q_shape and img_k_shape == img_k.shape
), f"img_kk: {img_q.shape}, img_q: {img_q.shape}, img_kk: {img_k.shape}, img_k: {img_k.shape}"
# img_q, img_k = img_qq, img_kk
# del img_qq, img_kk
q = torch.cat((img_q, txt_q), dim=1)
k = torch.cat((img_k, txt_k), dim=1)
del img_q, txt_q, img_k, txt_k
# Compute attention.
assert cu_seqlens_q.shape[0] == 2 * x.shape[0] + 1, f"cu_seqlens_q.shape:{cu_seqlens_q.shape}, x.shape[0]:{x.shape[0]}"
# attention computation start
if not self.hybrid_seq_parallel_attn:
l = [q, k, v]
q = k = v = None
attn = attention(
l,
mode=self.attn_mode,
attn_mask=attn_mask,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_kv=cu_seqlens_kv,
max_seqlen_q=max_seqlen_q,
max_seqlen_kv=max_seqlen_kv,
batch_size=x.shape[0],
)
else:
attn = parallel_attention(
self.hybrid_seq_parallel_attn,
q,
k,
v,
img_q_len=img_q.shape[1],
img_kv_len=img_k.shape[1],
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_kv=cu_seqlens_kv,
)
# attention computation end
# Compute activation in mlp stream, cat again and run second linear layer.
# mlp = mlp.to(x.device)
mlp = self.mlp_act(mlp)
attn_mlp = torch.cat((attn, mlp), 2)
attn = None
mlp = None
output = self.linear2(attn_mlp)
attn_mlp = None
return x + apply_gate(output, gate=mod_gate)
# def forward(
# self,
# x: torch.Tensor,
# vec: torch.Tensor,
# txt_len: int,
# attn_mask: Optional[torch.Tensor] = None,
# cu_seqlens_q: Optional[torch.Tensor] = None,
# cu_seqlens_kv: Optional[torch.Tensor] = None,
# max_seqlen_q: Optional[int] = None,
# max_seqlen_kv: Optional[int] = None,
# freqs_cis: Tuple[torch.Tensor, torch.Tensor] = None,
# ) -> torch.Tensor:
def forward(self, *args, **kwargs):
if self.training and self.gradient_checkpointing:
return checkpoint(self._forward, *args, use_reentrant=False, **kwargs)
else:
return self._forward(*args, **kwargs)
class HYVideoDiffusionTransformer(nn.Module): # ModelMixin, ConfigMixin):
"""
HunyuanVideo Transformer backbone
Inherited from ModelMixin and ConfigMixin for compatibility with diffusers' sampler StableDiffusionPipeline.
Reference:
[1] Flux.1: https://github.com/black-forest-labs/flux
[2] MMDiT: http://arxiv.org/abs/2403.03206
Parameters
----------
args: argparse.Namespace
The arguments parsed by argparse.
patch_size: list
The size of the patch.
in_channels: int
The number of input channels.
out_channels: int
The number of output channels.
hidden_size: int
The hidden size of the transformer backbone.
heads_num: int
The number of attention heads.
mlp_width_ratio: float
The ratio of the hidden size of the MLP in the transformer block.
mlp_act_type: str
The activation function of the MLP in the transformer block.
depth_double_blocks: int
The number of transformer blocks in the double blocks.
depth_single_blocks: int
The number of transformer blocks in the single blocks.
rope_dim_list: list
The dimension of the rotary embedding for t, h, w.
qkv_bias: bool
Whether to use bias in the qkv linear layer.
qk_norm: bool
Whether to use qk norm.
qk_norm_type: str
The type of qk norm.
guidance_embed: bool
Whether to use guidance embedding for distillation.
text_projection: str
The type of the text projection, default is single_refiner.
use_attention_mask: bool
Whether to use attention mask for text encoder.
dtype: torch.dtype
The dtype of the model.
device: torch.device
The device of the model.
attn_mode: str
The mode of the attention, default is flash.
"""
# @register_to_config
def __init__(
self,
text_states_dim: int,
text_states_dim_2: int,
patch_size: list = [1, 2, 2],
in_channels: int = 4, # Should be VAE.config.latent_channels.
out_channels: int = None,
hidden_size: int = 3072,
heads_num: int = 24,
mlp_width_ratio: float = 4.0,
mlp_act_type: str = "gelu_tanh",
mm_double_blocks_depth: int = 20,
mm_single_blocks_depth: int = 40,
rope_dim_list: List[int] = [16, 56, 56],
qkv_bias: bool = True,
qk_norm: bool = True,
qk_norm_type: str = "rms",
guidance_embed: bool = False, # For modulation.
text_projection: str = "single_refiner",
use_attention_mask: bool = True,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
attn_mode: str = "flash",
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.patch_size = patch_size
self.in_channels = in_channels
self.out_channels = in_channels if out_channels is None else out_channels
self.unpatchify_channels = self.out_channels
self.guidance_embed = guidance_embed
self.rope_dim_list = rope_dim_list
# Text projection. Default to linear projection.
# Alternative: TokenRefiner. See more details (LI-DiT): http://arxiv.org/abs/2406.11831
self.use_attention_mask = use_attention_mask
self.text_projection = text_projection
self.text_states_dim = text_states_dim
self.text_states_dim_2 = text_states_dim_2
if hidden_size % heads_num != 0:
raise ValueError(f"Hidden size {hidden_size} must be divisible by heads_num {heads_num}")
pe_dim = hidden_size // heads_num
if sum(rope_dim_list) != pe_dim:
raise ValueError(f"Got {rope_dim_list} but expected positional dim {pe_dim}")
self.hidden_size = hidden_size
self.heads_num = heads_num
self.attn_mode = attn_mode
# image projection
self.img_in = PatchEmbed(self.patch_size, self.in_channels, self.hidden_size, **factory_kwargs)
# text projection
if self.text_projection == "linear":
self.txt_in = TextProjection(
self.text_states_dim,
self.hidden_size,
get_activation_layer("silu"),
**factory_kwargs,
)
elif self.text_projection == "single_refiner":
self.txt_in = SingleTokenRefiner(self.text_states_dim, hidden_size, heads_num, depth=2, **factory_kwargs)
else:
raise NotImplementedError(f"Unsupported text_projection: {self.text_projection}")
# time modulation
self.time_in = TimestepEmbedder(self.hidden_size, get_activation_layer("silu"), **factory_kwargs)
# text modulation
self.vector_in = MLPEmbedder(self.text_states_dim_2, self.hidden_size, **factory_kwargs)
# guidance modulation
self.guidance_in = (
TimestepEmbedder(self.hidden_size, get_activation_layer("silu"), **factory_kwargs) if guidance_embed else None
)
# double blocks
self.double_blocks = nn.ModuleList(
[
MMDoubleStreamBlock(
self.hidden_size,
self.heads_num,
mlp_width_ratio=mlp_width_ratio,
mlp_act_type=mlp_act_type,
qk_norm=qk_norm,
qk_norm_type=qk_norm_type,
qkv_bias=qkv_bias,
attn_mode=attn_mode,
**factory_kwargs,
)
for _ in range(mm_double_blocks_depth)
]
)
# single blocks
self.single_blocks = nn.ModuleList(
[
MMSingleStreamBlock(
self.hidden_size,
self.heads_num,
mlp_width_ratio=mlp_width_ratio,
mlp_act_type=mlp_act_type,
qk_norm=qk_norm,
qk_norm_type=qk_norm_type,
attn_mode=attn_mode,
**factory_kwargs,
)
for _ in range(mm_single_blocks_depth)
]
)
self.final_layer = FinalLayer(
self.hidden_size,
self.patch_size,
self.out_channels,
get_activation_layer("silu"),
**factory_kwargs,
)
self.gradient_checkpointing = False
self.blocks_to_swap = None
self.offloader_double = None
self.offloader_single = None
self._enable_img_in_txt_in_offloading = False
@property
def device(self):
return next(self.parameters()).device
@property
def dtype(self):
return next(self.parameters()).dtype
def enable_gradient_checkpointing(self):
self.gradient_checkpointing = True
self.txt_in.enable_gradient_checkpointing()
for block in self.double_blocks + self.single_blocks:
block.enable_gradient_checkpointing()
print(f"HYVideoDiffusionTransformer: Gradient checkpointing enabled.")
def enable_img_in_txt_in_offloading(self):
self._enable_img_in_txt_in_offloading = True
def enable_block_swap(self, num_blocks: int, device: torch.device, supports_backward: bool):
self.blocks_to_swap = num_blocks
self.num_double_blocks = len(self.double_blocks)
self.num_single_blocks = len(self.single_blocks)
double_blocks_to_swap = num_blocks // 2
single_blocks_to_swap = (num_blocks - double_blocks_to_swap) * 2 + 1
assert double_blocks_to_swap <= self.num_double_blocks - 1 and single_blocks_to_swap <= self.num_single_blocks - 1, (
f"Cannot swap more than {self.num_double_blocks - 1} double blocks and {self.num_single_blocks - 1} single blocks. "
f"Requested {double_blocks_to_swap} double blocks and {single_blocks_to_swap} single blocks."
)
self.offloader_double = ModelOffloader(
"double", self.double_blocks, self.num_double_blocks, double_blocks_to_swap, supports_backward, device # , debug=True
)
self.offloader_single = ModelOffloader(
"single", self.single_blocks, self.num_single_blocks, single_blocks_to_swap, supports_backward, device # , debug=True
)
print(
f"HYVideoDiffusionTransformer: Block swap enabled. Swapping {num_blocks} blocks, double blocks: {double_blocks_to_swap}, single blocks: {single_blocks_to_swap}."
)
def move_to_device_except_swap_blocks(self, device: torch.device):
# assume model is on cpu. do not move blocks to device to reduce temporary memory usage
if self.blocks_to_swap:
save_double_blocks = self.double_blocks
save_single_blocks = self.single_blocks
self.double_blocks = None
self.single_blocks = None
self.to(device)
if self.blocks_to_swap:
self.double_blocks = save_double_blocks
self.single_blocks = save_single_blocks
def prepare_block_swap_before_forward(self):
if self.blocks_to_swap is None or self.blocks_to_swap == 0:
return
self.offloader_double.prepare_block_devices_before_forward(self.double_blocks)
self.offloader_single.prepare_block_devices_before_forward(self.single_blocks)
def enable_deterministic(self):
for block in self.double_blocks:
block.enable_deterministic()
for block in self.single_blocks:
block.enable_deterministic()
def disable_deterministic(self):
for block in self.double_blocks:
block.disable_deterministic()
for block in self.single_blocks:
block.disable_deterministic()
def forward(
self,
x: torch.Tensor,
t: torch.Tensor, # Should be in range(0, 1000).
text_states: torch.Tensor = None,
text_mask: torch.Tensor = None, # Now we don't use it.
text_states_2: Optional[torch.Tensor] = None, # Text embedding for modulation.
freqs_cos: Optional[torch.Tensor] = None,
freqs_sin: Optional[torch.Tensor] = None,
guidance: torch.Tensor = None, # Guidance for modulation, should be cfg_scale x 1000.
return_dict: bool = True,
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
out = {}
img = x
txt = text_states
_, _, ot, oh, ow = x.shape
tt, th, tw = (
ot // self.patch_size[0],
oh // self.patch_size[1],
ow // self.patch_size[2],
)
# Prepare modulation vectors.
vec = self.time_in(t)
# text modulation
vec = vec + self.vector_in(text_states_2)
# guidance modulation
if self.guidance_embed:
if guidance is None:
raise ValueError("Didn't get guidance strength for guidance distilled model.")
# our timestep_embedding is merged into guidance_in(TimestepEmbedder)
vec = vec + self.guidance_in(guidance)
# Embed image and text.
if self._enable_img_in_txt_in_offloading:
self.img_in.to(x.device, non_blocking=True)
self.txt_in.to(x.device, non_blocking=True)
synchronize_device(x.device)
img = self.img_in(img)
if self.text_projection == "linear":
txt = self.txt_in(txt)
elif self.text_projection == "single_refiner":
txt = self.txt_in(txt, t, text_mask if self.use_attention_mask else None)
else:
raise NotImplementedError(f"Unsupported text_projection: {self.text_projection}")
if self._enable_img_in_txt_in_offloading:
self.img_in.to(torch.device("cpu"), non_blocking=True)
self.txt_in.to(torch.device("cpu"), non_blocking=True)
synchronize_device(x.device)
clean_memory_on_device(x.device)
txt_seq_len = txt.shape[1]
img_seq_len = img.shape[1]
# Compute cu_squlens and max_seqlen for flash attention
cu_seqlens_q = get_cu_seqlens(text_mask, img_seq_len)
cu_seqlens_kv = cu_seqlens_q
max_seqlen_q = img_seq_len + txt_seq_len
max_seqlen_kv = max_seqlen_q
attn_mask = None
if self.attn_mode == "torch":
# initialize attention mask: bool tensor for sdpa, (b, 1, n, n)
bs = img.shape[0]
attn_mask = torch.zeros((bs, 1, max_seqlen_q, max_seqlen_q), dtype=torch.bool, device=text_mask.device)
# calculate text length and total length
text_len = text_mask.sum(dim=1) # (bs, )
total_len = img_seq_len + text_len # (bs, )
# set attention mask
for i in range(bs):
attn_mask[i, :, : total_len[i], : total_len[i]] = True
freqs_cis = (freqs_cos, freqs_sin) if freqs_cos is not None else None
# --------------------- Pass through DiT blocks ------------------------
for block_idx, block in enumerate(self.double_blocks):
double_block_args = [
img,
txt,
vec,
attn_mask,
cu_seqlens_q,
cu_seqlens_kv,
max_seqlen_q,
max_seqlen_kv,
freqs_cis,
]
if self.blocks_to_swap:
self.offloader_double.wait_for_block(block_idx)
img, txt = block(*double_block_args)
if self.blocks_to_swap:
self.offloader_double.submit_move_blocks_forward(self.double_blocks, block_idx)
# Merge txt and img to pass through single stream blocks.
x = torch.cat((img, txt), 1)
if self.blocks_to_swap:
# delete img, txt to reduce memory usage
del img, txt
clean_memory_on_device(x.device)
if len(self.single_blocks) > 0:
for block_idx, block in enumerate(self.single_blocks):
single_block_args = [
x,
vec,
txt_seq_len,
attn_mask,
cu_seqlens_q,
cu_seqlens_kv,
max_seqlen_q,
max_seqlen_kv,
(freqs_cos, freqs_sin),
]
if self.blocks_to_swap:
self.offloader_single.wait_for_block(block_idx)
x = block(*single_block_args)
if self.blocks_to_swap:
self.offloader_single.submit_move_blocks_forward(self.single_blocks, block_idx)
img = x[:, :img_seq_len, ...]
x = None
# ---------------------------- Final layer ------------------------------
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
img = self.unpatchify(img, tt, th, tw)
if return_dict:
out["x"] = img
return out
return img
def unpatchify(self, x, t, h, w):
"""
x: (N, T, patch_size**2 * C)
imgs: (N, H, W, C)
"""
c = self.unpatchify_channels
pt, ph, pw = self.patch_size
assert t * h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], t, h, w, c, pt, ph, pw))
x = torch.einsum("nthwcopq->nctohpwq", x)
imgs = x.reshape(shape=(x.shape[0], c, t * pt, h * ph, w * pw))
return imgs
def params_count(self):
counts = {
"double": sum(
[
sum(p.numel() for p in block.img_attn_qkv.parameters())
+ sum(p.numel() for p in block.img_attn_proj.parameters())
+ sum(p.numel() for p in block.img_mlp.parameters())
+ sum(p.numel() for p in block.txt_attn_qkv.parameters())
+ sum(p.numel() for p in block.txt_attn_proj.parameters())
+ sum(p.numel() for p in block.txt_mlp.parameters())
for block in self.double_blocks
]
),
"single": sum(
[
sum(p.numel() for p in block.linear1.parameters()) + sum(p.numel() for p in block.linear2.parameters())
for block in self.single_blocks
]
),
"total": sum(p.numel() for p in self.parameters()),
}
counts["attn+mlp"] = counts["double"] + counts["single"]
return counts
#################################################################################
# HunyuanVideo Configs #
#################################################################################
HUNYUAN_VIDEO_CONFIG = {
"HYVideo-T/2": {
"mm_double_blocks_depth": 20,
"mm_single_blocks_depth": 40,
"rope_dim_list": [16, 56, 56],
"hidden_size": 3072,
"heads_num": 24,
"mlp_width_ratio": 4,
},
"HYVideo-T/2-cfgdistill": {
"mm_double_blocks_depth": 20,
"mm_single_blocks_depth": 40,
"rope_dim_list": [16, 56, 56],
"hidden_size": 3072,
"heads_num": 24,
"mlp_width_ratio": 4,
"guidance_embed": True,
},
}
def load_dit_model(text_states_dim, text_states_dim_2, in_channels, out_channels, factor_kwargs):
"""load hunyuan video model
NOTE: Only support HYVideo-T/2-cfgdistill now.
Args:
text_state_dim (int): text state dimension
text_state_dim_2 (int): text state dimension 2
in_channels (int): input channels number
out_channels (int): output channels number
factor_kwargs (dict): factor kwargs
Returns:
model (nn.Module): The hunyuan video model
"""
# if args.model in HUNYUAN_VIDEO_CONFIG.keys():
model = HYVideoDiffusionTransformer(
text_states_dim=text_states_dim,
text_states_dim_2=text_states_dim_2,
in_channels=in_channels,
out_channels=out_channels,
**HUNYUAN_VIDEO_CONFIG["HYVideo-T/2-cfgdistill"],
**factor_kwargs,
)
return model
# else:
# raise NotImplementedError()
def load_state_dict(model, model_path):
state_dict = torch.load(model_path, map_location=lambda storage, loc: storage, weights_only=True)
load_key = "module"
if load_key in state_dict:
state_dict = state_dict[load_key]
else:
raise KeyError(
f"Missing key: `{load_key}` in the checkpoint: {model_path}. The keys in the checkpoint "
f"are: {list(state_dict.keys())}."
)
model.load_state_dict(state_dict, strict=True, assign=True)
return model
def load_transformer(dit_path, attn_mode, device, dtype) -> HYVideoDiffusionTransformer:
# =========================== Build main model ===========================
factor_kwargs = {"device": device, "dtype": dtype, "attn_mode": attn_mode}
latent_channels = 16
in_channels = latent_channels
out_channels = latent_channels
with accelerate.init_empty_weights():
transformer = load_dit_model(
text_states_dim=4096,
text_states_dim_2=768,
in_channels=in_channels,
out_channels=out_channels,
factor_kwargs=factor_kwargs,
)
if os.path.splitext(dit_path)[-1] == ".safetensors":
# loading safetensors: may be already fp8
with MemoryEfficientSafeOpen(dit_path) as f:
state_dict = {}
for k in f.keys():
tensor = f.get_tensor(k)
tensor = tensor.to(device=device, dtype=dtype)
# TODO support comfy model
# if k.startswith("model.model."):
# k = convert_comfy_model_key(k)
state_dict[k] = tensor
transformer.load_state_dict(state_dict, strict=True, assign=True)
else:
transformer = load_state_dict(transformer, dit_path)
return transformer
def get_rotary_pos_embed_by_shape(model, latents_size):
target_ndim = 3
ndim = 5 - 2
if isinstance(model.patch_size, int):
assert all(s % model.patch_size == 0 for s in latents_size), (
f"Latent size(last {ndim} dimensions) should be divisible by patch size({model.patch_size}), "
f"but got {latents_size}."
)
rope_sizes = [s // model.patch_size for s in latents_size]
elif isinstance(model.patch_size, list):
assert all(s % model.patch_size[idx] == 0 for idx, s in enumerate(latents_size)), (
f"Latent size(last {ndim} dimensions) should be divisible by patch size({model.patch_size}), "
f"but got {latents_size}."
)
rope_sizes = [s // model.patch_size[idx] for idx, s in enumerate(latents_size)]
if len(rope_sizes) != target_ndim:
rope_sizes = [1] * (target_ndim - len(rope_sizes)) + rope_sizes # time axis
head_dim = model.hidden_size // model.heads_num
rope_dim_list = model.rope_dim_list
if rope_dim_list is None:
rope_dim_list = [head_dim // target_ndim for _ in range(target_ndim)]
assert sum(rope_dim_list) == head_dim, "sum(rope_dim_list) should equal to head_dim of attention layer"
rope_theta = 256
freqs_cos, freqs_sin = get_nd_rotary_pos_embed(
rope_dim_list, rope_sizes, theta=rope_theta, use_real=True, theta_rescale_factor=1
)
return freqs_cos, freqs_sin
def get_rotary_pos_embed(vae_name, model, video_length, height, width):
# 884
if "884" in vae_name:
latents_size = [(video_length - 1) // 4 + 1, height // 8, width // 8]
elif "888" in vae_name:
latents_size = [(video_length - 1) // 8 + 1, height // 8, width // 8]
else:
latents_size = [video_length, height // 8, width // 8]
return get_rotary_pos_embed_by_shape(model, latents_size)
|