File size: 16,219 Bytes
e13f5a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
from dataclasses import dataclass
import json
from typing import Optional, Tuple, Union
from pathlib import Path

import numpy as np
import torch
import torch.nn as nn

from diffusers.utils import BaseOutput, is_torch_version
from diffusers.utils.torch_utils import randn_tensor
from diffusers.models.attention_processor import SpatialNorm
from modules.unet_causal_3d_blocks import CausalConv3d, UNetMidBlockCausal3D, get_down_block3d, get_up_block3d

import logging

logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)


SCALING_FACTOR = 0.476986
VAE_VER = "884-16c-hy"


def load_vae(
    vae_type: str = "884-16c-hy",
    vae_dtype: Optional[Union[str, torch.dtype]] = None,
    sample_size: tuple = None,
    vae_path: str = None,
    device=None,
):
    """the fucntion to load the 3D VAE model

    Args:
        vae_type (str): the type of the 3D VAE model. Defaults to "884-16c-hy".
        vae_precision (str, optional): the precision to load vae. Defaults to None.
        sample_size (tuple, optional): the tiling size. Defaults to None.
        vae_path (str, optional): the path to vae. Defaults to None.
        logger (_type_, optional): logger. Defaults to None.
        device (_type_, optional): device to load vae. Defaults to None.
    """
    if vae_path is None:
        vae_path = VAE_PATH[vae_type]

    logger.info(f"Loading 3D VAE model ({vae_type}) from: {vae_path}")

    # use fixed config for Hunyuan's VAE
    CONFIG_JSON = """{
    "_class_name": "AutoencoderKLCausal3D",
    "_diffusers_version": "0.4.2",
    "act_fn": "silu",
    "block_out_channels": [
      128,
      256,
      512,
      512
    ],
    "down_block_types": [
      "DownEncoderBlockCausal3D",
      "DownEncoderBlockCausal3D",
      "DownEncoderBlockCausal3D",
      "DownEncoderBlockCausal3D"
    ],
    "in_channels": 3,
    "latent_channels": 16,
    "layers_per_block": 2,
    "norm_num_groups": 32,
    "out_channels": 3,
    "sample_size": 256,
    "sample_tsize": 64,
    "up_block_types": [
      "UpDecoderBlockCausal3D",
      "UpDecoderBlockCausal3D",
      "UpDecoderBlockCausal3D",
      "UpDecoderBlockCausal3D"
    ],
    "scaling_factor": 0.476986,
    "time_compression_ratio": 4,
    "mid_block_add_attention": true
  }"""

    # config = AutoencoderKLCausal3D.load_config(vae_path)
    config = json.loads(CONFIG_JSON)

    # import here to avoid circular import
    from .autoencoder_kl_causal_3d import AutoencoderKLCausal3D

    if sample_size:
        vae = AutoencoderKLCausal3D.from_config(config, sample_size=sample_size)
    else:
        vae = AutoencoderKLCausal3D.from_config(config)

    # vae_ckpt = Path(vae_path) / "pytorch_model.pt"
    # assert vae_ckpt.exists(), f"VAE checkpoint not found: {vae_ckpt}"

    ckpt = torch.load(vae_path, map_location=vae.device, weights_only=True)
    if "state_dict" in ckpt:
        ckpt = ckpt["state_dict"]
    if any(k.startswith("vae.") for k in ckpt.keys()):
        ckpt = {k.replace("vae.", ""): v for k, v in ckpt.items() if k.startswith("vae.")}
    vae.load_state_dict(ckpt)

    spatial_compression_ratio = vae.config.spatial_compression_ratio
    time_compression_ratio = vae.config.time_compression_ratio

    if vae_dtype is not None:
        vae = vae.to(vae_dtype)

    vae.requires_grad_(False)

    logger.info(f"VAE to dtype: {vae.dtype}")

    if device is not None:
        vae = vae.to(device)

    vae.eval()

    return vae, vae_path, spatial_compression_ratio, time_compression_ratio


@dataclass
class DecoderOutput(BaseOutput):
    r"""
    Output of decoding method.

    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            The decoded output sample from the last layer of the model.
    """

    sample: torch.FloatTensor


class EncoderCausal3D(nn.Module):
    r"""
    The `EncoderCausal3D` layer of a variational autoencoder that encodes its input into a latent representation.
    """

    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 3,
        down_block_types: Tuple[str, ...] = ("DownEncoderBlockCausal3D",),
        block_out_channels: Tuple[int, ...] = (64,),
        layers_per_block: int = 2,
        norm_num_groups: int = 32,
        act_fn: str = "silu",
        double_z: bool = True,
        mid_block_add_attention=True,
        time_compression_ratio: int = 4,
        spatial_compression_ratio: int = 8,
    ):
        super().__init__()
        self.layers_per_block = layers_per_block

        self.conv_in = CausalConv3d(in_channels, block_out_channels[0], kernel_size=3, stride=1)
        self.mid_block = None
        self.down_blocks = nn.ModuleList([])

        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1
            num_spatial_downsample_layers = int(np.log2(spatial_compression_ratio))
            num_time_downsample_layers = int(np.log2(time_compression_ratio))

            if time_compression_ratio == 4:
                add_spatial_downsample = bool(i < num_spatial_downsample_layers)
                add_time_downsample = bool(i >= (len(block_out_channels) - 1 - num_time_downsample_layers) and not is_final_block)
            else:
                raise ValueError(f"Unsupported time_compression_ratio: {time_compression_ratio}.")

            downsample_stride_HW = (2, 2) if add_spatial_downsample else (1, 1)
            downsample_stride_T = (2,) if add_time_downsample else (1,)
            downsample_stride = tuple(downsample_stride_T + downsample_stride_HW)
            down_block = get_down_block3d(
                down_block_type,
                num_layers=self.layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                add_downsample=bool(add_spatial_downsample or add_time_downsample),
                downsample_stride=downsample_stride,
                resnet_eps=1e-6,
                downsample_padding=0,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                attention_head_dim=output_channel,
                temb_channels=None,
            )
            self.down_blocks.append(down_block)

        # mid
        self.mid_block = UNetMidBlockCausal3D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
            resnet_time_scale_shift="default",
            attention_head_dim=block_out_channels[-1],
            resnet_groups=norm_num_groups,
            temb_channels=None,
            add_attention=mid_block_add_attention,
        )

        # out
        self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
        self.conv_act = nn.SiLU()

        conv_out_channels = 2 * out_channels if double_z else out_channels
        self.conv_out = CausalConv3d(block_out_channels[-1], conv_out_channels, kernel_size=3)

    def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor:
        r"""The forward method of the `EncoderCausal3D` class."""
        assert len(sample.shape) == 5, "The input tensor should have 5 dimensions"

        sample = self.conv_in(sample)

        # down
        for down_block in self.down_blocks:
            sample = down_block(sample)

        # middle
        sample = self.mid_block(sample)

        # post-process
        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        return sample


class DecoderCausal3D(nn.Module):
    r"""
    The `DecoderCausal3D` layer of a variational autoencoder that decodes its latent representation into an output sample.
    """

    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 3,
        up_block_types: Tuple[str, ...] = ("UpDecoderBlockCausal3D",),
        block_out_channels: Tuple[int, ...] = (64,),
        layers_per_block: int = 2,
        norm_num_groups: int = 32,
        act_fn: str = "silu",
        norm_type: str = "group",  # group, spatial
        mid_block_add_attention=True,
        time_compression_ratio: int = 4,
        spatial_compression_ratio: int = 8,
    ):
        super().__init__()
        self.layers_per_block = layers_per_block

        self.conv_in = CausalConv3d(in_channels, block_out_channels[-1], kernel_size=3, stride=1)
        self.mid_block = None
        self.up_blocks = nn.ModuleList([])

        temb_channels = in_channels if norm_type == "spatial" else None

        # mid
        self.mid_block = UNetMidBlockCausal3D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
            resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
            attention_head_dim=block_out_channels[-1],
            resnet_groups=norm_num_groups,
            temb_channels=temb_channels,
            add_attention=mid_block_add_attention,
        )

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1
            num_spatial_upsample_layers = int(np.log2(spatial_compression_ratio))
            num_time_upsample_layers = int(np.log2(time_compression_ratio))

            if time_compression_ratio == 4:
                add_spatial_upsample = bool(i < num_spatial_upsample_layers)
                add_time_upsample = bool(i >= len(block_out_channels) - 1 - num_time_upsample_layers and not is_final_block)
            else:
                raise ValueError(f"Unsupported time_compression_ratio: {time_compression_ratio}.")

            upsample_scale_factor_HW = (2, 2) if add_spatial_upsample else (1, 1)
            upsample_scale_factor_T = (2,) if add_time_upsample else (1,)
            upsample_scale_factor = tuple(upsample_scale_factor_T + upsample_scale_factor_HW)
            up_block = get_up_block3d(
                up_block_type,
                num_layers=self.layers_per_block + 1,
                in_channels=prev_output_channel,
                out_channels=output_channel,
                prev_output_channel=None,
                add_upsample=bool(add_spatial_upsample or add_time_upsample),
                upsample_scale_factor=upsample_scale_factor,
                resnet_eps=1e-6,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                attention_head_dim=output_channel,
                temb_channels=temb_channels,
                resnet_time_scale_shift=norm_type,
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
        if norm_type == "spatial":
            self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
        else:
            self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
        self.conv_act = nn.SiLU()
        self.conv_out = CausalConv3d(block_out_channels[0], out_channels, kernel_size=3)

        self.gradient_checkpointing = False

    def forward(
        self,
        sample: torch.FloatTensor,
        latent_embeds: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        r"""The forward method of the `DecoderCausal3D` class."""
        assert len(sample.shape) == 5, "The input tensor should have 5 dimensions."

        sample = self.conv_in(sample)

        upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
        if self.training and self.gradient_checkpointing:

            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

            if is_torch_version(">=", "1.11.0"):
                # middle
                sample = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(self.mid_block),
                    sample,
                    latent_embeds,
                    use_reentrant=False,
                )
                sample = sample.to(upscale_dtype)

                # up
                for up_block in self.up_blocks:
                    sample = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(up_block),
                        sample,
                        latent_embeds,
                        use_reentrant=False,
                    )
            else:
                # middle
                sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample, latent_embeds)
                sample = sample.to(upscale_dtype)

                # up
                for up_block in self.up_blocks:
                    sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds)
        else:
            # middle
            sample = self.mid_block(sample, latent_embeds)
            sample = sample.to(upscale_dtype)

            # up
            for up_block in self.up_blocks:
                sample = up_block(sample, latent_embeds)

        # post-process
        if latent_embeds is None:
            sample = self.conv_norm_out(sample)
        else:
            sample = self.conv_norm_out(sample, latent_embeds)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        return sample


class DiagonalGaussianDistribution(object):
    def __init__(self, parameters: torch.Tensor, deterministic: bool = False):
        if parameters.ndim == 3:
            dim = 2  # (B, L, C)
        elif parameters.ndim == 5 or parameters.ndim == 4:
            dim = 1  # (B, C, T, H ,W) / (B, C, H, W)
        else:
            raise NotImplementedError
        self.parameters = parameters
        self.mean, self.logvar = torch.chunk(parameters, 2, dim=dim)
        self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
        self.deterministic = deterministic
        self.std = torch.exp(0.5 * self.logvar)
        self.var = torch.exp(self.logvar)
        if self.deterministic:
            self.var = self.std = torch.zeros_like(self.mean, device=self.parameters.device, dtype=self.parameters.dtype)

    def sample(self, generator: Optional[torch.Generator] = None) -> torch.FloatTensor:
        # make sure sample is on the same device as the parameters and has same dtype
        sample = randn_tensor(
            self.mean.shape,
            generator=generator,
            device=self.parameters.device,
            dtype=self.parameters.dtype,
        )
        x = self.mean + self.std * sample
        return x

    def kl(self, other: "DiagonalGaussianDistribution" = None) -> torch.Tensor:
        if self.deterministic:
            return torch.Tensor([0.0])
        else:
            reduce_dim = list(range(1, self.mean.ndim))
            if other is None:
                return 0.5 * torch.sum(
                    torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
                    dim=reduce_dim,
                )
            else:
                return 0.5 * torch.sum(
                    torch.pow(self.mean - other.mean, 2) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar,
                    dim=reduce_dim,
                )

    def nll(self, sample: torch.Tensor, dims: Tuple[int, ...] = [1, 2, 3]) -> torch.Tensor:
        if self.deterministic:
            return torch.Tensor([0.0])
        logtwopi = np.log(2.0 * np.pi)
        return 0.5 * torch.sum(
            logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
            dim=dims,
        )

    def mode(self) -> torch.Tensor:
        return self.mean