File size: 10,398 Bytes
5d3f081 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
from concurrent.futures import ThreadPoolExecutor
import gc
import time
from typing import Optional
import torch
import torch.nn as nn
def clean_memory_on_device(device: torch.device):
r"""
Clean memory on the specified device, will be called from training scripts.
"""
gc.collect()
# device may "cuda" or "cuda:0", so we need to check the type of device
if device.type == "cuda":
torch.cuda.empty_cache()
if device.type == "xpu":
torch.xpu.empty_cache()
if device.type == "mps":
torch.mps.empty_cache()
def synchronize_device(device: torch.device):
if device.type == "cuda":
torch.cuda.synchronize()
elif device.type == "xpu":
torch.xpu.synchronize()
elif device.type == "mps":
torch.mps.synchronize()
def swap_weight_devices_cuda(device: torch.device, layer_to_cpu: nn.Module, layer_to_cuda: nn.Module):
assert layer_to_cpu.__class__ == layer_to_cuda.__class__
weight_swap_jobs = []
# This is not working for all cases (e.g. SD3), so we need to find the corresponding modules
# for module_to_cpu, module_to_cuda in zip(layer_to_cpu.modules(), layer_to_cuda.modules()):
# print(module_to_cpu.__class__, module_to_cuda.__class__)
# if hasattr(module_to_cpu, "weight") and module_to_cpu.weight is not None:
# weight_swap_jobs.append((module_to_cpu, module_to_cuda, module_to_cpu.weight.data, module_to_cuda.weight.data))
modules_to_cpu = {k: v for k, v in layer_to_cpu.named_modules()}
for module_to_cuda_name, module_to_cuda in layer_to_cuda.named_modules():
if hasattr(module_to_cuda, "weight") and module_to_cuda.weight is not None:
module_to_cpu = modules_to_cpu.get(module_to_cuda_name, None)
if module_to_cpu is not None and module_to_cpu.weight.shape == module_to_cuda.weight.shape:
weight_swap_jobs.append((module_to_cpu, module_to_cuda, module_to_cpu.weight.data, module_to_cuda.weight.data))
else:
if module_to_cuda.weight.data.device.type != device.type:
# print(
# f"Module {module_to_cuda_name} not found in CPU model or shape mismatch, so not swapping and moving to device"
# )
module_to_cuda.weight.data = module_to_cuda.weight.data.to(device)
torch.cuda.current_stream().synchronize() # this prevents the illegal loss value
stream = torch.cuda.Stream()
with torch.cuda.stream(stream):
# cuda to cpu
for module_to_cpu, module_to_cuda, cuda_data_view, cpu_data_view in weight_swap_jobs:
cuda_data_view.record_stream(stream)
module_to_cpu.weight.data = cuda_data_view.data.to("cpu", non_blocking=True)
stream.synchronize()
# cpu to cuda
for module_to_cpu, module_to_cuda, cuda_data_view, cpu_data_view in weight_swap_jobs:
cuda_data_view.copy_(module_to_cuda.weight.data, non_blocking=True)
module_to_cuda.weight.data = cuda_data_view
stream.synchronize()
torch.cuda.current_stream().synchronize() # this prevents the illegal loss value
def swap_weight_devices_no_cuda(device: torch.device, layer_to_cpu: nn.Module, layer_to_cuda: nn.Module):
"""
not tested
"""
assert layer_to_cpu.__class__ == layer_to_cuda.__class__
weight_swap_jobs = []
for module_to_cpu, module_to_cuda in zip(layer_to_cpu.modules(), layer_to_cuda.modules()):
if hasattr(module_to_cpu, "weight") and module_to_cpu.weight is not None:
weight_swap_jobs.append((module_to_cpu, module_to_cuda, module_to_cpu.weight.data, module_to_cuda.weight.data))
# device to cpu
for module_to_cpu, module_to_cuda, cuda_data_view, cpu_data_view in weight_swap_jobs:
module_to_cpu.weight.data = cuda_data_view.data.to("cpu", non_blocking=True)
synchronize_device()
# cpu to device
for module_to_cpu, module_to_cuda, cuda_data_view, cpu_data_view in weight_swap_jobs:
cuda_data_view.copy_(module_to_cuda.weight.data, non_blocking=True)
module_to_cuda.weight.data = cuda_data_view
synchronize_device()
def weighs_to_device(layer: nn.Module, device: torch.device):
for module in layer.modules():
if hasattr(module, "weight") and module.weight is not None:
module.weight.data = module.weight.data.to(device, non_blocking=True)
class Offloader:
"""
common offloading class
"""
def __init__(self, block_type: str, num_blocks: int, blocks_to_swap: int, device: torch.device, debug: bool = False):
self.block_type = block_type
self.num_blocks = num_blocks
self.blocks_to_swap = blocks_to_swap
self.device = device
self.debug = debug
self.thread_pool = ThreadPoolExecutor(max_workers=1)
self.futures = {}
self.cuda_available = device.type == "cuda"
def swap_weight_devices(self, block_to_cpu: nn.Module, block_to_cuda: nn.Module):
if self.cuda_available:
swap_weight_devices_cuda(self.device, block_to_cpu, block_to_cuda)
else:
swap_weight_devices_no_cuda(self.device, block_to_cpu, block_to_cuda)
def _submit_move_blocks(self, blocks, block_idx_to_cpu, block_idx_to_cuda):
def move_blocks(bidx_to_cpu, block_to_cpu, bidx_to_cuda, block_to_cuda):
if self.debug:
start_time = time.perf_counter()
print(
f"[{self.block_type}] Move block {bidx_to_cpu} to CPU and block {bidx_to_cuda} to {'CUDA' if self.cuda_available else 'device'}"
)
self.swap_weight_devices(block_to_cpu, block_to_cuda)
if self.debug:
print(f"[{self.block_type}] Moved blocks {bidx_to_cpu} and {bidx_to_cuda} in {time.perf_counter()-start_time:.2f}s")
return bidx_to_cpu, bidx_to_cuda # , event
block_to_cpu = blocks[block_idx_to_cpu]
block_to_cuda = blocks[block_idx_to_cuda]
self.futures[block_idx_to_cuda] = self.thread_pool.submit(
move_blocks, block_idx_to_cpu, block_to_cpu, block_idx_to_cuda, block_to_cuda
)
def _wait_blocks_move(self, block_idx):
if block_idx not in self.futures:
return
if self.debug:
print(f"[{self.block_type}] Wait for block {block_idx}")
start_time = time.perf_counter()
future = self.futures.pop(block_idx)
_, bidx_to_cuda = future.result()
assert block_idx == bidx_to_cuda, f"Block index mismatch: {block_idx} != {bidx_to_cuda}"
if self.debug:
print(f"[{self.block_type}] Waited for block {block_idx}: {time.perf_counter()-start_time:.2f}s")
class ModelOffloader(Offloader):
"""
supports forward offloading
"""
def __init__(
self,
block_type: str,
blocks: list[nn.Module],
num_blocks: int,
blocks_to_swap: int,
supports_backward: bool,
device: torch.device,
debug: bool = False,
):
super().__init__(block_type, num_blocks, blocks_to_swap, device, debug)
self.supports_backward = supports_backward
if self.supports_backward:
# register backward hooks
self.remove_handles = []
for i, block in enumerate(blocks):
hook = self.create_backward_hook(blocks, i)
if hook is not None:
handle = block.register_full_backward_hook(hook)
self.remove_handles.append(handle)
def __del__(self):
if self.supports_backward:
for handle in self.remove_handles:
handle.remove()
def create_backward_hook(self, blocks: list[nn.Module], block_index: int) -> Optional[callable]:
# -1 for 0-based index
num_blocks_propagated = self.num_blocks - block_index - 1
swapping = num_blocks_propagated > 0 and num_blocks_propagated <= self.blocks_to_swap
waiting = block_index > 0 and block_index <= self.blocks_to_swap
if not swapping and not waiting:
return None
# create hook
block_idx_to_cpu = self.num_blocks - num_blocks_propagated
block_idx_to_cuda = self.blocks_to_swap - num_blocks_propagated
block_idx_to_wait = block_index - 1
def backward_hook(module, grad_input, grad_output):
if self.debug:
print(f"Backward hook for block {block_index}")
if swapping:
self._submit_move_blocks(blocks, block_idx_to_cpu, block_idx_to_cuda)
if waiting:
self._wait_blocks_move(block_idx_to_wait)
return None
return backward_hook
def prepare_block_devices_before_forward(self, blocks: list[nn.Module]):
if self.blocks_to_swap is None or self.blocks_to_swap == 0:
return
if self.debug:
print(f"[{self.block_type}] Prepare block devices before forward")
for b in blocks[0 : self.num_blocks - self.blocks_to_swap]:
b.to(self.device)
weighs_to_device(b, self.device) # make sure weights are on device
for b in blocks[self.num_blocks - self.blocks_to_swap :]:
b.to(self.device) # move block to device first
weighs_to_device(b, "cpu") # make sure weights are on cpu
synchronize_device(self.device)
clean_memory_on_device(self.device)
def wait_for_block(self, block_idx: int):
if self.blocks_to_swap is None or self.blocks_to_swap == 0:
return
self._wait_blocks_move(block_idx)
def submit_move_blocks_forward(self, blocks: list[nn.Module], block_idx: int):
# check if blocks_to_swap is enabled
if self.blocks_to_swap is None or self.blocks_to_swap == 0:
return
# if supports_backward, we swap blocks more than blocks_to_swap in backward pass
if self.supports_backward and block_idx >= self.blocks_to_swap:
return
block_idx_to_cpu = block_idx
block_idx_to_cuda = self.num_blocks - self.blocks_to_swap + block_idx
block_idx_to_cuda = block_idx_to_cuda % self.num_blocks # this works for forward-only offloading
self._submit_move_blocks(blocks, block_idx_to_cpu, block_idx_to_cuda)
|