|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.utils import BaseOutput, logging |
|
from diffusers.schedulers.scheduling_utils import SchedulerMixin |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
@dataclass |
|
class FlowMatchDiscreteSchedulerOutput(BaseOutput): |
|
""" |
|
Output class for the scheduler's `step` function output. |
|
|
|
Args: |
|
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the |
|
denoising loop. |
|
""" |
|
|
|
prev_sample: torch.FloatTensor |
|
|
|
|
|
class FlowMatchDiscreteScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
Euler scheduler. |
|
|
|
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic |
|
methods the library implements for all schedulers such as loading and saving. |
|
|
|
Args: |
|
num_train_timesteps (`int`, defaults to 1000): |
|
The number of diffusion steps to train the model. |
|
timestep_spacing (`str`, defaults to `"linspace"`): |
|
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and |
|
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. |
|
shift (`float`, defaults to 1.0): |
|
The shift value for the timestep schedule. |
|
reverse (`bool`, defaults to `True`): |
|
Whether to reverse the timestep schedule. |
|
""" |
|
|
|
_compatibles = [] |
|
order = 1 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
shift: float = 1.0, |
|
reverse: bool = True, |
|
solver: str = "euler", |
|
n_tokens: Optional[int] = None, |
|
): |
|
sigmas = torch.linspace(1, 0, num_train_timesteps + 1) |
|
|
|
if not reverse: |
|
sigmas = sigmas.flip(0) |
|
|
|
self.sigmas = sigmas |
|
|
|
self.timesteps = (sigmas[:-1] * num_train_timesteps).to(dtype=torch.float32) |
|
|
|
self._step_index = None |
|
self._begin_index = None |
|
|
|
self.supported_solver = ["euler"] |
|
if solver not in self.supported_solver: |
|
raise ValueError( |
|
f"Solver {solver} not supported. Supported solvers: {self.supported_solver}" |
|
) |
|
|
|
@property |
|
def step_index(self): |
|
""" |
|
The index counter for current timestep. It will increase 1 after each scheduler step. |
|
""" |
|
return self._step_index |
|
|
|
@property |
|
def begin_index(self): |
|
""" |
|
The index for the first timestep. It should be set from pipeline with `set_begin_index` method. |
|
""" |
|
return self._begin_index |
|
|
|
|
|
def set_begin_index(self, begin_index: int = 0): |
|
""" |
|
Sets the begin index for the scheduler. This function should be run from pipeline before the inference. |
|
|
|
Args: |
|
begin_index (`int`): |
|
The begin index for the scheduler. |
|
""" |
|
self._begin_index = begin_index |
|
|
|
def _sigma_to_t(self, sigma): |
|
return sigma * self.config.num_train_timesteps |
|
|
|
def set_timesteps( |
|
self, |
|
num_inference_steps: int, |
|
device: Union[str, torch.device] = None, |
|
n_tokens: int = None, |
|
): |
|
""" |
|
Sets the discrete timesteps used for the diffusion chain (to be run before inference). |
|
|
|
Args: |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
n_tokens (`int`, *optional*): |
|
Number of tokens in the input sequence. |
|
""" |
|
self.num_inference_steps = num_inference_steps |
|
|
|
sigmas = torch.linspace(1, 0, num_inference_steps + 1) |
|
sigmas = self.sd3_time_shift(sigmas) |
|
|
|
if not self.config.reverse: |
|
sigmas = 1 - sigmas |
|
|
|
self.sigmas = sigmas |
|
self.timesteps = (sigmas[:-1] * self.config.num_train_timesteps).to( |
|
dtype=torch.float32, device=device |
|
) |
|
|
|
|
|
self._step_index = None |
|
|
|
def index_for_timestep(self, timestep, schedule_timesteps=None): |
|
if schedule_timesteps is None: |
|
schedule_timesteps = self.timesteps |
|
|
|
indices = (schedule_timesteps == timestep).nonzero() |
|
|
|
|
|
|
|
|
|
|
|
pos = 1 if len(indices) > 1 else 0 |
|
|
|
return indices[pos].item() |
|
|
|
def _init_step_index(self, timestep): |
|
if self.begin_index is None: |
|
if isinstance(timestep, torch.Tensor): |
|
timestep = timestep.to(self.timesteps.device) |
|
self._step_index = self.index_for_timestep(timestep) |
|
else: |
|
self._step_index = self._begin_index |
|
|
|
def scale_model_input( |
|
self, sample: torch.Tensor, timestep: Optional[int] = None |
|
) -> torch.Tensor: |
|
return sample |
|
|
|
def sd3_time_shift(self, t: torch.Tensor): |
|
return (self.config.shift * t) / (1 + (self.config.shift - 1) * t) |
|
|
|
def step( |
|
self, |
|
model_output: torch.FloatTensor, |
|
timestep: Union[float, torch.FloatTensor], |
|
sample: torch.FloatTensor, |
|
return_dict: bool = True, |
|
) -> Union[FlowMatchDiscreteSchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): |
|
The direct output from learned diffusion model. |
|
timestep (`float`): |
|
The current discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
A current instance of a sample created by the diffusion process. |
|
generator (`torch.Generator`, *optional*): |
|
A random number generator. |
|
n_tokens (`int`, *optional*): |
|
Number of tokens in the input sequence. |
|
return_dict (`bool`): |
|
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or |
|
tuple. |
|
|
|
Returns: |
|
[`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`: |
|
If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is |
|
returned, otherwise a tuple is returned where the first element is the sample tensor. |
|
""" |
|
|
|
if ( |
|
isinstance(timestep, int) |
|
or isinstance(timestep, torch.IntTensor) |
|
or isinstance(timestep, torch.LongTensor) |
|
): |
|
raise ValueError( |
|
( |
|
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" |
|
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass" |
|
" one of the `scheduler.timesteps` as a timestep." |
|
), |
|
) |
|
|
|
if self.step_index is None: |
|
self._init_step_index(timestep) |
|
|
|
|
|
sample = sample.to(torch.float32) |
|
|
|
dt = self.sigmas[self.step_index + 1] - self.sigmas[self.step_index] |
|
|
|
if self.config.solver == "euler": |
|
prev_sample = sample + model_output.to(torch.float32) * dt |
|
else: |
|
raise ValueError( |
|
f"Solver {self.config.solver} not supported. Supported solvers: {self.supported_solver}" |
|
) |
|
|
|
|
|
self._step_index += 1 |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return FlowMatchDiscreteSchedulerOutput(prev_sample=prev_sample) |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|