|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
from einops import rearrange |
|
|
|
from diffusers.utils import logging |
|
from diffusers.models.activations import get_activation |
|
from diffusers.models.attention_processor import SpatialNorm |
|
from diffusers.models.attention_processor import Attention |
|
from diffusers.models.normalization import AdaGroupNorm |
|
from diffusers.models.normalization import RMSNorm |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def prepare_causal_attention_mask(n_frame: int, n_hw: int, dtype, device, batch_size: int = None): |
|
seq_len = n_frame * n_hw |
|
mask = torch.full((seq_len, seq_len), float("-inf"), dtype=dtype, device=device) |
|
for i in range(seq_len): |
|
i_frame = i // n_hw |
|
mask[i, : (i_frame + 1) * n_hw] = 0 |
|
if batch_size is not None: |
|
mask = mask.unsqueeze(0).expand(batch_size, -1, -1) |
|
return mask |
|
|
|
|
|
class CausalConv3d(nn.Module): |
|
""" |
|
Implements a causal 3D convolution layer where each position only depends on previous timesteps and current spatial locations. |
|
This maintains temporal causality in video generation tasks. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
chan_in, |
|
chan_out, |
|
kernel_size: Union[int, Tuple[int, int, int]], |
|
stride: Union[int, Tuple[int, int, int]] = 1, |
|
dilation: Union[int, Tuple[int, int, int]] = 1, |
|
pad_mode="replicate", |
|
chunk_size=0, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
|
|
self.pad_mode = pad_mode |
|
padding = (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size - 1, 0) |
|
self.time_causal_padding = padding |
|
self.chunk_size = chunk_size |
|
|
|
self.conv = nn.Conv3d(chan_in, chan_out, kernel_size, stride=stride, dilation=dilation, **kwargs) |
|
|
|
def original_forward(self, x): |
|
x = F.pad(x, self.time_causal_padding, mode=self.pad_mode) |
|
return self.conv(x) |
|
|
|
def forward(self, x): |
|
if self.chunk_size == 0: |
|
return self.original_forward(x) |
|
|
|
|
|
if x.shape[4] < self.chunk_size * 1.5: |
|
return self.original_forward(x) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
kernel_size = self.conv.kernel_size[0] |
|
assert kernel_size == self.conv.kernel_size[1] == self.conv.kernel_size[2], "Only cubic kernels are supported" |
|
padding_size = kernel_size // 2 |
|
|
|
x = F.pad(x, self.time_causal_padding, mode=self.pad_mode) |
|
|
|
B, C, D, H, W = orig_shape = x.shape |
|
chunk_size = self.chunk_size |
|
chunk_size -= chunk_size % self.conv.stride[2] |
|
|
|
|
|
|
|
indices = [] |
|
i = 0 |
|
while i < W - padding_size: |
|
start_idx = i - padding_size |
|
end_idx = min(i + chunk_size + padding_size, W) |
|
if i == 0: |
|
start_idx = 0 |
|
end_idx += padding_size |
|
if W - end_idx < chunk_size // 2: |
|
end_idx = W |
|
indices.append((start_idx, end_idx)) |
|
i = end_idx - padding_size |
|
|
|
|
|
chunks = [] |
|
for start_idx, end_idx in indices: |
|
chunk = x[:, :, :, :, start_idx:end_idx] |
|
chunk_output = self.conv(chunk) |
|
|
|
chunks.append(chunk_output) |
|
|
|
|
|
x = torch.cat(chunks, dim=4) |
|
|
|
assert ( |
|
x.shape[2] == ((D - padding_size * 2) + self.conv.stride[0] - 1) // self.conv.stride[0] |
|
), f"Invalid shape: {x.shape}, {orig_shape}, {padding_size}, {self.conv.stride}" |
|
assert ( |
|
x.shape[3] == ((H - padding_size * 2) + self.conv.stride[1] - 1) // self.conv.stride[1] |
|
), f"Invalid shape: {x.shape}, {orig_shape}, {padding_size}, {self.conv.stride}" |
|
assert ( |
|
x.shape[4] == ((W - padding_size * 2) + self.conv.stride[2] - 1) // self.conv.stride[2] |
|
), f"Invalid shape: {x.shape}, {orig_shape}, {padding_size}, {self.conv.stride}" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return x |
|
|
|
|
|
class UpsampleCausal3D(nn.Module): |
|
""" |
|
A 3D upsampling layer with an optional convolution. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels: int, |
|
use_conv: bool = False, |
|
use_conv_transpose: bool = False, |
|
out_channels: Optional[int] = None, |
|
name: str = "conv", |
|
kernel_size: Optional[int] = None, |
|
padding=1, |
|
norm_type=None, |
|
eps=None, |
|
elementwise_affine=None, |
|
bias=True, |
|
interpolate=True, |
|
upsample_factor=(2, 2, 2), |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.use_conv_transpose = use_conv_transpose |
|
self.name = name |
|
self.interpolate = interpolate |
|
self.upsample_factor = upsample_factor |
|
|
|
if norm_type == "ln_norm": |
|
self.norm = nn.LayerNorm(channels, eps, elementwise_affine) |
|
elif norm_type == "rms_norm": |
|
self.norm = RMSNorm(channels, eps, elementwise_affine) |
|
elif norm_type is None: |
|
self.norm = None |
|
else: |
|
raise ValueError(f"unknown norm_type: {norm_type}") |
|
|
|
conv = None |
|
if use_conv_transpose: |
|
raise NotImplementedError |
|
elif use_conv: |
|
if kernel_size is None: |
|
kernel_size = 3 |
|
conv = CausalConv3d(self.channels, self.out_channels, kernel_size=kernel_size, bias=bias) |
|
|
|
if name == "conv": |
|
self.conv = conv |
|
else: |
|
self.Conv2d_0 = conv |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
output_size: Optional[int] = None, |
|
scale: float = 1.0, |
|
) -> torch.FloatTensor: |
|
assert hidden_states.shape[1] == self.channels |
|
|
|
if self.norm is not None: |
|
raise NotImplementedError |
|
|
|
if self.use_conv_transpose: |
|
return self.conv(hidden_states) |
|
|
|
|
|
dtype = hidden_states.dtype |
|
if dtype == torch.bfloat16: |
|
hidden_states = hidden_states.to(torch.float32) |
|
|
|
|
|
if hidden_states.shape[0] >= 64: |
|
hidden_states = hidden_states.contiguous() |
|
|
|
|
|
|
|
if self.interpolate: |
|
B, C, T, H, W = hidden_states.shape |
|
first_h, other_h = hidden_states.split((1, T - 1), dim=2) |
|
if output_size is None: |
|
if T > 1: |
|
other_h = F.interpolate(other_h, scale_factor=self.upsample_factor, mode="nearest") |
|
|
|
first_h = first_h.squeeze(2) |
|
first_h = F.interpolate(first_h, scale_factor=self.upsample_factor[1:], mode="nearest") |
|
first_h = first_h.unsqueeze(2) |
|
else: |
|
raise NotImplementedError |
|
|
|
if T > 1: |
|
hidden_states = torch.cat((first_h, other_h), dim=2) |
|
else: |
|
hidden_states = first_h |
|
|
|
|
|
if dtype == torch.bfloat16: |
|
hidden_states = hidden_states.to(dtype) |
|
|
|
if self.use_conv: |
|
if self.name == "conv": |
|
hidden_states = self.conv(hidden_states) |
|
else: |
|
hidden_states = self.Conv2d_0(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class DownsampleCausal3D(nn.Module): |
|
""" |
|
A 3D downsampling layer with an optional convolution. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels: int, |
|
use_conv: bool = False, |
|
out_channels: Optional[int] = None, |
|
padding: int = 1, |
|
name: str = "conv", |
|
kernel_size=3, |
|
norm_type=None, |
|
eps=None, |
|
elementwise_affine=None, |
|
bias=True, |
|
stride=2, |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.padding = padding |
|
stride = stride |
|
self.name = name |
|
|
|
if norm_type == "ln_norm": |
|
self.norm = nn.LayerNorm(channels, eps, elementwise_affine) |
|
elif norm_type == "rms_norm": |
|
self.norm = RMSNorm(channels, eps, elementwise_affine) |
|
elif norm_type is None: |
|
self.norm = None |
|
else: |
|
raise ValueError(f"unknown norm_type: {norm_type}") |
|
|
|
if use_conv: |
|
conv = CausalConv3d(self.channels, self.out_channels, kernel_size=kernel_size, stride=stride, bias=bias) |
|
else: |
|
raise NotImplementedError |
|
|
|
if name == "conv": |
|
self.Conv2d_0 = conv |
|
self.conv = conv |
|
elif name == "Conv2d_0": |
|
self.conv = conv |
|
else: |
|
self.conv = conv |
|
|
|
def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor: |
|
assert hidden_states.shape[1] == self.channels |
|
|
|
if self.norm is not None: |
|
hidden_states = self.norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) |
|
|
|
assert hidden_states.shape[1] == self.channels |
|
|
|
hidden_states = self.conv(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class ResnetBlockCausal3D(nn.Module): |
|
r""" |
|
A Resnet block. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
*, |
|
in_channels: int, |
|
out_channels: Optional[int] = None, |
|
conv_shortcut: bool = False, |
|
dropout: float = 0.0, |
|
temb_channels: int = 512, |
|
groups: int = 32, |
|
groups_out: Optional[int] = None, |
|
pre_norm: bool = True, |
|
eps: float = 1e-6, |
|
non_linearity: str = "swish", |
|
skip_time_act: bool = False, |
|
|
|
time_embedding_norm: str = "default", |
|
kernel: Optional[torch.FloatTensor] = None, |
|
output_scale_factor: float = 1.0, |
|
use_in_shortcut: Optional[bool] = None, |
|
up: bool = False, |
|
down: bool = False, |
|
conv_shortcut_bias: bool = True, |
|
conv_3d_out_channels: Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.pre_norm = pre_norm |
|
self.pre_norm = True |
|
self.in_channels = in_channels |
|
out_channels = in_channels if out_channels is None else out_channels |
|
self.out_channels = out_channels |
|
self.use_conv_shortcut = conv_shortcut |
|
self.up = up |
|
self.down = down |
|
self.output_scale_factor = output_scale_factor |
|
self.time_embedding_norm = time_embedding_norm |
|
self.skip_time_act = skip_time_act |
|
|
|
linear_cls = nn.Linear |
|
|
|
if groups_out is None: |
|
groups_out = groups |
|
|
|
if self.time_embedding_norm == "ada_group": |
|
self.norm1 = AdaGroupNorm(temb_channels, in_channels, groups, eps=eps) |
|
elif self.time_embedding_norm == "spatial": |
|
self.norm1 = SpatialNorm(in_channels, temb_channels) |
|
else: |
|
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) |
|
|
|
self.conv1 = CausalConv3d(in_channels, out_channels, kernel_size=3, stride=1) |
|
|
|
if temb_channels is not None: |
|
if self.time_embedding_norm == "default": |
|
self.time_emb_proj = linear_cls(temb_channels, out_channels) |
|
elif self.time_embedding_norm == "scale_shift": |
|
self.time_emb_proj = linear_cls(temb_channels, 2 * out_channels) |
|
elif self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": |
|
self.time_emb_proj = None |
|
else: |
|
raise ValueError(f"Unknown time_embedding_norm : {self.time_embedding_norm} ") |
|
else: |
|
self.time_emb_proj = None |
|
|
|
if self.time_embedding_norm == "ada_group": |
|
self.norm2 = AdaGroupNorm(temb_channels, out_channels, groups_out, eps=eps) |
|
elif self.time_embedding_norm == "spatial": |
|
self.norm2 = SpatialNorm(out_channels, temb_channels) |
|
else: |
|
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) |
|
|
|
self.dropout = torch.nn.Dropout(dropout) |
|
conv_3d_out_channels = conv_3d_out_channels or out_channels |
|
self.conv2 = CausalConv3d(out_channels, conv_3d_out_channels, kernel_size=3, stride=1) |
|
|
|
self.nonlinearity = get_activation(non_linearity) |
|
|
|
self.upsample = self.downsample = None |
|
if self.up: |
|
self.upsample = UpsampleCausal3D(in_channels, use_conv=False) |
|
elif self.down: |
|
self.downsample = DownsampleCausal3D(in_channels, use_conv=False, name="op") |
|
|
|
self.use_in_shortcut = self.in_channels != conv_3d_out_channels if use_in_shortcut is None else use_in_shortcut |
|
|
|
self.conv_shortcut = None |
|
if self.use_in_shortcut: |
|
self.conv_shortcut = CausalConv3d( |
|
in_channels, |
|
conv_3d_out_channels, |
|
kernel_size=1, |
|
stride=1, |
|
bias=conv_shortcut_bias, |
|
) |
|
|
|
def forward( |
|
self, |
|
input_tensor: torch.FloatTensor, |
|
temb: torch.FloatTensor, |
|
scale: float = 1.0, |
|
) -> torch.FloatTensor: |
|
hidden_states = input_tensor |
|
|
|
if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": |
|
hidden_states = self.norm1(hidden_states, temb) |
|
else: |
|
hidden_states = self.norm1(hidden_states) |
|
|
|
hidden_states = self.nonlinearity(hidden_states) |
|
|
|
if self.upsample is not None: |
|
|
|
if hidden_states.shape[0] >= 64: |
|
input_tensor = input_tensor.contiguous() |
|
hidden_states = hidden_states.contiguous() |
|
input_tensor = self.upsample(input_tensor, scale=scale) |
|
hidden_states = self.upsample(hidden_states, scale=scale) |
|
elif self.downsample is not None: |
|
input_tensor = self.downsample(input_tensor, scale=scale) |
|
hidden_states = self.downsample(hidden_states, scale=scale) |
|
|
|
hidden_states = self.conv1(hidden_states) |
|
|
|
if self.time_emb_proj is not None: |
|
if not self.skip_time_act: |
|
temb = self.nonlinearity(temb) |
|
temb = self.time_emb_proj(temb, scale)[:, :, None, None] |
|
|
|
if temb is not None and self.time_embedding_norm == "default": |
|
hidden_states = hidden_states + temb |
|
|
|
if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": |
|
hidden_states = self.norm2(hidden_states, temb) |
|
else: |
|
hidden_states = self.norm2(hidden_states) |
|
|
|
if temb is not None and self.time_embedding_norm == "scale_shift": |
|
scale, shift = torch.chunk(temb, 2, dim=1) |
|
hidden_states = hidden_states * (1 + scale) + shift |
|
|
|
hidden_states = self.nonlinearity(hidden_states) |
|
|
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.conv2(hidden_states) |
|
|
|
if self.conv_shortcut is not None: |
|
input_tensor = self.conv_shortcut(input_tensor) |
|
|
|
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor |
|
|
|
return output_tensor |
|
|
|
|
|
def get_down_block3d( |
|
down_block_type: str, |
|
num_layers: int, |
|
in_channels: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
add_downsample: bool, |
|
downsample_stride: int, |
|
resnet_eps: float, |
|
resnet_act_fn: str, |
|
transformer_layers_per_block: int = 1, |
|
num_attention_heads: Optional[int] = None, |
|
resnet_groups: Optional[int] = None, |
|
cross_attention_dim: Optional[int] = None, |
|
downsample_padding: Optional[int] = None, |
|
dual_cross_attention: bool = False, |
|
use_linear_projection: bool = False, |
|
only_cross_attention: bool = False, |
|
upcast_attention: bool = False, |
|
resnet_time_scale_shift: str = "default", |
|
attention_type: str = "default", |
|
resnet_skip_time_act: bool = False, |
|
resnet_out_scale_factor: float = 1.0, |
|
cross_attention_norm: Optional[str] = None, |
|
attention_head_dim: Optional[int] = None, |
|
downsample_type: Optional[str] = None, |
|
dropout: float = 0.0, |
|
): |
|
|
|
if attention_head_dim is None: |
|
logger.warn( |
|
f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}." |
|
) |
|
attention_head_dim = num_attention_heads |
|
|
|
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type |
|
if down_block_type == "DownEncoderBlockCausal3D": |
|
return DownEncoderBlockCausal3D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
dropout=dropout, |
|
add_downsample=add_downsample, |
|
downsample_stride=downsample_stride, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
downsample_padding=downsample_padding, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
) |
|
raise ValueError(f"{down_block_type} does not exist.") |
|
|
|
|
|
def get_up_block3d( |
|
up_block_type: str, |
|
num_layers: int, |
|
in_channels: int, |
|
out_channels: int, |
|
prev_output_channel: int, |
|
temb_channels: int, |
|
add_upsample: bool, |
|
upsample_scale_factor: Tuple, |
|
resnet_eps: float, |
|
resnet_act_fn: str, |
|
resolution_idx: Optional[int] = None, |
|
transformer_layers_per_block: int = 1, |
|
num_attention_heads: Optional[int] = None, |
|
resnet_groups: Optional[int] = None, |
|
cross_attention_dim: Optional[int] = None, |
|
dual_cross_attention: bool = False, |
|
use_linear_projection: bool = False, |
|
only_cross_attention: bool = False, |
|
upcast_attention: bool = False, |
|
resnet_time_scale_shift: str = "default", |
|
attention_type: str = "default", |
|
resnet_skip_time_act: bool = False, |
|
resnet_out_scale_factor: float = 1.0, |
|
cross_attention_norm: Optional[str] = None, |
|
attention_head_dim: Optional[int] = None, |
|
upsample_type: Optional[str] = None, |
|
dropout: float = 0.0, |
|
) -> nn.Module: |
|
|
|
if attention_head_dim is None: |
|
logger.warn( |
|
f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}." |
|
) |
|
attention_head_dim = num_attention_heads |
|
|
|
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type |
|
if up_block_type == "UpDecoderBlockCausal3D": |
|
return UpDecoderBlockCausal3D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
resolution_idx=resolution_idx, |
|
dropout=dropout, |
|
add_upsample=add_upsample, |
|
upsample_scale_factor=upsample_scale_factor, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
temb_channels=temb_channels, |
|
) |
|
raise ValueError(f"{up_block_type} does not exist.") |
|
|
|
|
|
class UNetMidBlockCausal3D(nn.Module): |
|
""" |
|
A 3D UNet mid-block [`UNetMidBlockCausal3D`] with multiple residual blocks and optional attention blocks. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
attn_groups: Optional[int] = None, |
|
resnet_pre_norm: bool = True, |
|
add_attention: bool = True, |
|
attention_head_dim: int = 1, |
|
output_scale_factor: float = 1.0, |
|
): |
|
super().__init__() |
|
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) |
|
self.add_attention = add_attention |
|
|
|
if attn_groups is None: |
|
attn_groups = resnet_groups if resnet_time_scale_shift == "default" else None |
|
|
|
|
|
resnets = [ |
|
ResnetBlockCausal3D( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
] |
|
attentions = [] |
|
|
|
if attention_head_dim is None: |
|
logger.warn( |
|
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}." |
|
) |
|
attention_head_dim = in_channels |
|
|
|
for _ in range(num_layers): |
|
if self.add_attention: |
|
attentions.append( |
|
Attention( |
|
in_channels, |
|
heads=in_channels // attention_head_dim, |
|
dim_head=attention_head_dim, |
|
rescale_output_factor=output_scale_factor, |
|
eps=resnet_eps, |
|
norm_num_groups=attn_groups, |
|
spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None, |
|
residual_connection=True, |
|
bias=True, |
|
upcast_softmax=True, |
|
_from_deprecated_attn_block=True, |
|
) |
|
) |
|
else: |
|
attentions.append(None) |
|
|
|
resnets.append( |
|
ResnetBlockCausal3D( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
|
|
self.attentions = nn.ModuleList(attentions) |
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor: |
|
hidden_states = self.resnets[0](hidden_states, temb) |
|
for attn, resnet in zip(self.attentions, self.resnets[1:]): |
|
if attn is not None: |
|
B, C, T, H, W = hidden_states.shape |
|
hidden_states = rearrange(hidden_states, "b c f h w -> b (f h w) c") |
|
attention_mask = prepare_causal_attention_mask(T, H * W, hidden_states.dtype, hidden_states.device, batch_size=B) |
|
hidden_states = attn(hidden_states, temb=temb, attention_mask=attention_mask) |
|
hidden_states = rearrange(hidden_states, "b (f h w) c -> b c f h w", f=T, h=H, w=W) |
|
hidden_states = resnet(hidden_states, temb) |
|
|
|
return hidden_states |
|
|
|
|
|
class DownEncoderBlockCausal3D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
output_scale_factor: float = 1.0, |
|
add_downsample: bool = True, |
|
downsample_stride: int = 2, |
|
downsample_padding: int = 1, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
|
|
for i in range(num_layers): |
|
in_channels = in_channels if i == 0 else out_channels |
|
resnets.append( |
|
ResnetBlockCausal3D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=None, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
|
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_downsample: |
|
self.downsamplers = nn.ModuleList( |
|
[ |
|
DownsampleCausal3D( |
|
out_channels, |
|
use_conv=True, |
|
out_channels=out_channels, |
|
padding=downsample_padding, |
|
name="op", |
|
stride=downsample_stride, |
|
) |
|
] |
|
) |
|
else: |
|
self.downsamplers = None |
|
|
|
def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor: |
|
for resnet in self.resnets: |
|
hidden_states = resnet(hidden_states, temb=None, scale=scale) |
|
|
|
if self.downsamplers is not None: |
|
for downsampler in self.downsamplers: |
|
hidden_states = downsampler(hidden_states, scale) |
|
|
|
return hidden_states |
|
|
|
|
|
class UpDecoderBlockCausal3D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
resolution_idx: Optional[int] = None, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
output_scale_factor: float = 1.0, |
|
add_upsample: bool = True, |
|
upsample_scale_factor=(2, 2, 2), |
|
temb_channels: Optional[int] = None, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
|
|
for i in range(num_layers): |
|
input_channels = in_channels if i == 0 else out_channels |
|
|
|
resnets.append( |
|
ResnetBlockCausal3D( |
|
in_channels=input_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
|
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_upsample: |
|
self.upsamplers = nn.ModuleList( |
|
[ |
|
UpsampleCausal3D( |
|
out_channels, |
|
use_conv=True, |
|
out_channels=out_channels, |
|
upsample_factor=upsample_scale_factor, |
|
) |
|
] |
|
) |
|
else: |
|
self.upsamplers = None |
|
|
|
self.resolution_idx = resolution_idx |
|
|
|
def forward( |
|
self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0 |
|
) -> torch.FloatTensor: |
|
for resnet in self.resnets: |
|
hidden_states = resnet(hidden_states, temb=temb, scale=scale) |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states) |
|
|
|
return hidden_states |
|
|