--- license: llama2 language: - it tags: - text-generation-inference --- # Model Card for LLaMAntino-2-chat-13b-ITA ## Model description **LLaMAntino-2-chat-13b** is a *Large Language Model (LLM)* that is an italian-adapted **LLaMA 2 chat**. This model aims to provide Italian NLP researchers with a base model for italian dialogue use cases. The model was trained using *QLora* and using as training data [clean_mc4_it medium](https://huggingface.co/datasets/gsarti/clean_mc4_it/viewer/medium). If you are interested in more details regarding the training procedure, you can find the code we used at the following link: - **Repository:** https://github.com/swapUniba/LLaMAntino **NOTICE**: the code has not been released yet, we apologize for the delay, it will be available asap! - **Developed by:** Pierpaolo Basile, Elio Musacchio, Marco Polignano, Lucia Siciliani, Giuseppe Fiameni, Giovanni Semeraro - **Funded by:** PNRR project FAIR - Future AI Research - **Compute infrastructure:** [Leonardo](https://www.hpc.cineca.it/systems/hardware/leonardo/) supercomputer - **Model type:** LLaMA 2 chat - **Language(s) (NLP):** Italian - **License:** Llama 2 Community License - **Finetuned from model:** [NousResearch/Llama-2-13b-chat-hf](https://huggingface.co/NousResearch/Llama-2-13b-chat-hf) ## How to Get Started with the Model Below you can find an example of model usage: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "swap-uniba/LLaMAntino-2-chat-13b-hf-ITA" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) prompt = "Scrivi qui un possibile prompt" input_ids = tokenizer(prompt, return_tensors="pt").input_ids outputs = model.generate(input_ids=input_ids) print(tokenizer.batch_decode(outputs.detach().cpu().numpy()[:, input_ids.shape[1]:], skip_special_tokens=True)[0]) ``` If you are facing issues when loading the model, you can try to load it quantized: ```python model = AutoModelForCausalLM.from_pretrained(model_id, load_in_8bit=True) ``` *Note*: The model loading strategy above requires the [*bitsandbytes*](https://pypi.org/project/bitsandbytes/) and [*accelerate*](https://pypi.org/project/accelerate/) libraries ## Citation If you use this model in your research, please cite the following: ```bibtex @misc{basile2023llamantino, title={LLaMAntino: LLaMA 2 Models for Effective Text Generation in Italian Language}, author={Pierpaolo Basile and Elio Musacchio and Marco Polignano and Lucia Siciliani and Giuseppe Fiameni and Giovanni Semeraro}, year={2023}, eprint={2312.09993}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```