--- license: mit base_model: xlm-roberta-large tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: XLM-RoBERTa-Large-Conll2003-English-NER-Finetune results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: test args: conll2003 metrics: - name: Precision type: precision value: 0.9247648902821317 - name: Recall type: recall value: 0.9401558073654391 - name: F1 type: f1 value: 0.932396839332748 - name: Accuracy type: accuracy value: 0.9851405190050608 --- # XLM-RoBERTa-Large-Conll2003-English-NER-Finetune This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.2205 - Precision: 0.9248 - Recall: 0.9402 - F1: 0.9324 - Accuracy: 0.9851 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.6457 | 0.3333 | 1441 | 0.1841 | 0.8167 | 0.8336 | 0.8250 | 0.9674 | | 0.0893 | 0.6667 | 2882 | 0.1399 | 0.8827 | 0.8950 | 0.8888 | 0.9781 | | 0.0637 | 1.0 | 4323 | 0.1449 | 0.8939 | 0.9024 | 0.8981 | 0.9802 | | 0.0457 | 1.3333 | 5764 | 0.1552 | 0.8955 | 0.9163 | 0.9057 | 0.9816 | | 0.0387 | 1.6667 | 7205 | 0.1566 | 0.9041 | 0.9233 | 0.9136 | 0.9825 | | 0.0401 | 2.0 | 8646 | 0.1493 | 0.8982 | 0.9311 | 0.9144 | 0.9824 | | 0.0276 | 2.3333 | 10087 | 0.1655 | 0.9038 | 0.9299 | 0.9167 | 0.9820 | | 0.0248 | 2.6667 | 11528 | 0.1783 | 0.9127 | 0.9309 | 0.9217 | 0.9829 | | 0.0266 | 3.0 | 12969 | 0.1601 | 0.9120 | 0.9340 | 0.9228 | 0.9833 | | 0.0166 | 3.3333 | 14410 | 0.1801 | 0.9181 | 0.9288 | 0.9234 | 0.9842 | | 0.0187 | 3.6667 | 15851 | 0.1717 | 0.9170 | 0.9325 | 0.9247 | 0.9843 | | 0.0185 | 4.0 | 17292 | 0.1653 | 0.9190 | 0.9343 | 0.9266 | 0.9844 | | 0.0126 | 4.3333 | 18733 | 0.1845 | 0.9176 | 0.9343 | 0.9259 | 0.9843 | | 0.0133 | 4.6667 | 20174 | 0.1855 | 0.9174 | 0.9322 | 0.9247 | 0.9837 | | 0.0119 | 5.0 | 21615 | 0.1782 | 0.9168 | 0.9329 | 0.9248 | 0.9843 | | 0.01 | 5.3333 | 23056 | 0.1892 | 0.9173 | 0.9366 | 0.9269 | 0.9843 | | 0.0083 | 5.6667 | 24497 | 0.1800 | 0.9251 | 0.9343 | 0.9297 | 0.9845 | | 0.0079 | 6.0 | 25938 | 0.1868 | 0.9237 | 0.9352 | 0.9294 | 0.9851 | | 0.0059 | 6.3333 | 27379 | 0.2073 | 0.9178 | 0.9350 | 0.9263 | 0.9842 | | 0.0068 | 6.6667 | 28820 | 0.2061 | 0.9195 | 0.9379 | 0.9286 | 0.9843 | | 0.0062 | 7.0 | 30261 | 0.2011 | 0.9215 | 0.9377 | 0.9295 | 0.9846 | | 0.0037 | 7.3333 | 31702 | 0.2100 | 0.9209 | 0.9373 | 0.9290 | 0.9846 | | 0.0043 | 7.6667 | 33143 | 0.2145 | 0.9202 | 0.9389 | 0.9295 | 0.9847 | | 0.0039 | 8.0 | 34584 | 0.2070 | 0.9256 | 0.9377 | 0.9316 | 0.9852 | | 0.0024 | 8.3333 | 36025 | 0.2138 | 0.9218 | 0.9394 | 0.9306 | 0.9851 | | 0.0034 | 8.6667 | 37466 | 0.2159 | 0.9229 | 0.9394 | 0.9311 | 0.9849 | | 0.003 | 9.0 | 38907 | 0.2156 | 0.9244 | 0.9377 | 0.9310 | 0.9846 | | 0.002 | 9.3333 | 40348 | 0.2201 | 0.9252 | 0.9402 | 0.9326 | 0.9849 | | 0.0015 | 9.6667 | 41789 | 0.2217 | 0.9245 | 0.9393 | 0.9318 | 0.9850 | | 0.0028 | 10.0 | 43230 | 0.2205 | 0.9248 | 0.9402 | 0.9324 | 0.9851 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1