szybe commited on
Commit
b94836a
·
verified ·
1 Parent(s): 9beba25

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,651 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:156
8
+ - loss:MatryoshkaLoss
9
+ - loss:MultipleNegativesRankingLoss
10
+ base_model: Snowflake/snowflake-arctic-embed-l
11
+ widget:
12
+ - source_sentence: What significant multi-modal models were released by major vendors
13
+ in 2024?
14
+ sentences:
15
+ - 'Intuitively, one would expect that systems this powerful would take millions
16
+ of lines of complex code. Instead, it turns out a few hundred lines of Python
17
+ is genuinely enough to train a basic version!
18
+
19
+ What matters most is the training data. You need a lot of data to make these
20
+ things work, and the quantity and quality of the training data appears to be the
21
+ most important factor in how good the resulting model is.
22
+
23
+ If you can gather the right data, and afford to pay for the GPUs to train it,
24
+ you can build an LLM.'
25
+ - 'In 2024, almost every significant model vendor released multi-modal models. We
26
+ saw the Claude 3 series from Anthropic in March, Gemini 1.5 Pro in April (images,
27
+ audio and video), then September brought Qwen2-VL and Mistral’s Pixtral 12B and
28
+ Meta’s Llama 3.2 11B and 90B vision models. We got audio input and output from
29
+ OpenAI in October, then November saw SmolVLM from Hugging Face and December saw
30
+ image and video models from Amazon Nova.
31
+
32
+ In October I upgraded my LLM CLI tool to support multi-modal models via attachments.
33
+ It now has plugins for a whole collection of different vision models.'
34
+ - 'Those US export regulations on GPUs to China seem to have inspired some very
35
+ effective training optimizations!
36
+
37
+ The environmental impact got better
38
+
39
+ A welcome result of the increased efficiency of the models—both the hosted ones
40
+ and the ones I can run locally—is that the energy usage and environmental impact
41
+ of running a prompt has dropped enormously over the past couple of years.
42
+
43
+ OpenAI themselves are charging 100x less for a prompt compared to the GPT-3 days.
44
+ I have it on good authority that neither Google Gemini nor Amazon Nova (two of
45
+ the least expensive model providers) are running prompts at a loss.'
46
+ - source_sentence: How did the construction of railways in the 1800s impact the environment?
47
+ sentences:
48
+ - 'OpenAI made GPT-4o free for all users in May, and Claude 3.5 Sonnet was freely
49
+ available from its launch in June. This was a momentus change, because for the
50
+ previous year free users had mostly been restricted to GPT-3.5 level models, meaning
51
+ new users got a very inaccurate mental model of what a capable LLM could actually
52
+ do.
53
+
54
+ That era appears to have ended, likely permanently, with OpenAI’s launch of ChatGPT
55
+ Pro. This $200/month subscription service is the only way to access their most
56
+ capable model, o1 Pro.
57
+
58
+ Since the trick behind the o1 series (and the future models it will undoubtedly
59
+ inspire) is to expend more compute time to get better results, I don’t think those
60
+ days of free access to the best available models are likely to return.'
61
+ - 'An interesting point of comparison here could be the way railways rolled out
62
+ around the world in the 1800s. Constructing these required enormous investments
63
+ and had a massive environmental impact, and many of the lines that were built
64
+ turned out to be unnecessary—sometimes multiple lines from different companies
65
+ serving the exact same routes!
66
+
67
+ The resulting bubbles contributed to several financial crashes, see Wikipedia
68
+ for Panic of 1873, Panic of 1893, Panic of 1901 and the UK’s Railway Mania. They
69
+ left us with a lot of useful infrastructure and a great deal of bankruptcies and
70
+ environmental damage.
71
+
72
+ The year of slop'
73
+ - 'The boring yet crucial secret behind good system prompts is test-driven development.
74
+ You don’t write down a system prompt and find ways to test it. You write down
75
+ tests and find a system prompt that passes them.
76
+
77
+
78
+ It’s become abundantly clear over the course of 2024 that writing good automated
79
+ evals for LLM-powered systems is the skill that’s most needed to build useful
80
+ applications on top of these models. If you have a strong eval suite you can adopt
81
+ new models faster, iterate better and build more reliable and useful product features
82
+ than your competition.
83
+
84
+ Vercel’s Malte Ubl:'
85
+ - source_sentence: Why does the author believe that gullibility may hinder the development
86
+ of AI agents?
87
+ sentences:
88
+ - 'An interesting point of comparison here could be the way railways rolled out
89
+ around the world in the 1800s. Constructing these required enormous investments
90
+ and had a massive environmental impact, and many of the lines that were built
91
+ turned out to be unnecessary—sometimes multiple lines from different companies
92
+ serving the exact same routes!
93
+
94
+ The resulting bubbles contributed to several financial crashes, see Wikipedia
95
+ for Panic of 1873, Panic of 1893, Panic of 1901 and the UK’s Railway Mania. They
96
+ left us with a lot of useful infrastructure and a great deal of bankruptcies and
97
+ environmental damage.
98
+
99
+ The year of slop'
100
+ - 'A lot of people are excited about AI agents—an infuriatingly vague term that
101
+ seems to be converging on “AI systems that can go away and act on your behalf”.
102
+ We’ve been talking about them all year, but I’ve seen few if any examples of them
103
+ running in production, despite lots of exciting prototypes.
104
+
105
+ I think this is because of gullibility.
106
+
107
+ Can we solve this? Honestly, I’m beginning to suspect that you can’t fully solve
108
+ gullibility without achieving AGI. So it may be quite a while before those agent
109
+ dreams can really start to come true!
110
+
111
+ Code may be the best application
112
+
113
+ Over the course of the year, it’s become increasingly clear that writing code
114
+ is one of the things LLMs are most capable of.'
115
+ - 'The environmental impact got much, much worse
116
+
117
+ The much bigger problem here is the enormous competitive buildout of the infrastructure
118
+ that is imagined to be necessary for these models in the future.
119
+
120
+ Companies like Google, Meta, Microsoft and Amazon are all spending billions of
121
+ dollars rolling out new datacenters, with a very material impact on the electricity
122
+ grid and the environment. There’s even talk of spinning up new nuclear power stations,
123
+ but those can take decades.
124
+
125
+ Is this infrastructure necessary? DeepSeek v3’s $6m training cost and the continued
126
+ crash in LLM prices might hint that it’s not. But would you want to be the big
127
+ tech executive that argued NOT to build out this infrastructure only to be proven
128
+ wrong in a few years’ time?'
129
+ - source_sentence: How did the approach to handling prompts change after the initial
130
+ release of @v0?
131
+ sentences:
132
+ - 'So far, I think they’re a net positive. I’ve used them on a personal level to
133
+ improve my productivity (and entertain myself) in all sorts of different ways.
134
+ I think people who learn how to use them effectively can gain a significant boost
135
+ to their quality of life.
136
+
137
+ A lot of people are yet to be sold on their value! Some think their negatives
138
+ outweigh their positives, some think they are all hot air, and some even think
139
+ they represent an existential threat to humanity.
140
+
141
+ They’re actually quite easy to build
142
+
143
+ The most surprising thing we’ve learned about LLMs this year is that they’re actually
144
+ quite easy to build.'
145
+ - 'DeepSeek v3 is a huge 685B parameter model—one of the largest openly licensed
146
+ models currently available, significantly bigger than the largest of Meta’s Llama
147
+ series, Llama 3.1 405B.
148
+
149
+ Benchmarks put it up there with Claude 3.5 Sonnet. Vibe benchmarks (aka the Chatbot
150
+ Arena) currently rank it 7th, just behind the Gemini 2.0 and OpenAI 4o/o1 models.
151
+ This is by far the highest ranking openly licensed model.
152
+
153
+ The really impressive thing about DeepSeek v3 is the training cost. The model
154
+ was trained on 2,788,000 H800 GPU hours at an estimated cost of $5,576,000. Llama
155
+ 3.1 405B trained 30,840,000 GPU hours—11x that used by DeepSeek v3, for a model
156
+ that benchmarks slightly worse.'
157
+ - 'When @v0 first came out we were paranoid about protecting the prompt with all
158
+ kinds of pre and post processing complexity.
159
+
160
+ We completely pivoted to let it rip. A prompt without the evals, models, and especially
161
+ UX is like getting a broken ASML machine without a manual'
162
+ - source_sentence: What are the hardware requirements mentioned for running a model
163
+ like GPT-4?
164
+ sentences:
165
+ - 'This remains astonishing to me. I thought a model with the capabilities and output
166
+ quality of GPT-4 needed a datacenter class server with one or more $40,000+ GPUs.
167
+
168
+ These models take up enough of my 64GB of RAM that I don’t run them often—they
169
+ don’t leave much room for anything else.
170
+
171
+ The fact that they run at all is a testament to the incredible training and inference
172
+ performance gains that we’ve figured out over the past year. It turns out there
173
+ was a lot of low-hanging fruit to be harvested in terms of model efficiency. I
174
+ expect there’s still more to come.'
175
+ - 'The two main categories I see are people who think AI agents are obviously things
176
+ that go and act on your behalf—the travel agent model—and people who think in
177
+ terms of LLMs that have been given access to tools which they can run in a loop
178
+ as part of solving a problem. The term “autonomy” is often thrown into the mix
179
+ too, again without including a clear definition.
180
+
181
+ (I also collected 211 definitions on Twitter a few months ago—here they are in
182
+ Datasette Lite—and had gemini-exp-1206 attempt to summarize them.)
183
+
184
+ Whatever the term may mean, agents still have that feeling of perpetually “coming
185
+ soon”.'
186
+ - 'Terminology aside, I remain skeptical as to their utility based, once again,
187
+ on the challenge of gullibility. LLMs believe anything you tell them. Any systems
188
+ that attempts to make meaningful decisions on your behalf will run into the same
189
+ roadblock: how good is a travel agent, or a digital assistant, or even a research
190
+ tool if it can’t distinguish truth from fiction?
191
+
192
+ Just the other day Google Search was caught serving up an entirely fake description
193
+ of the non-existant movie “Encanto 2”. It turned out to be summarizing an imagined
194
+ movie listing from a fan fiction wiki.'
195
+ pipeline_tag: sentence-similarity
196
+ library_name: sentence-transformers
197
+ metrics:
198
+ - cosine_accuracy@1
199
+ - cosine_accuracy@3
200
+ - cosine_accuracy@5
201
+ - cosine_accuracy@10
202
+ - cosine_precision@1
203
+ - cosine_precision@3
204
+ - cosine_precision@5
205
+ - cosine_precision@10
206
+ - cosine_recall@1
207
+ - cosine_recall@3
208
+ - cosine_recall@5
209
+ - cosine_recall@10
210
+ - cosine_ndcg@10
211
+ - cosine_mrr@10
212
+ - cosine_map@100
213
+ model-index:
214
+ - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
215
+ results:
216
+ - task:
217
+ type: information-retrieval
218
+ name: Information Retrieval
219
+ dataset:
220
+ name: Unknown
221
+ type: unknown
222
+ metrics:
223
+ - type: cosine_accuracy@1
224
+ value: 0.875
225
+ name: Cosine Accuracy@1
226
+ - type: cosine_accuracy@3
227
+ value: 1.0
228
+ name: Cosine Accuracy@3
229
+ - type: cosine_accuracy@5
230
+ value: 1.0
231
+ name: Cosine Accuracy@5
232
+ - type: cosine_accuracy@10
233
+ value: 1.0
234
+ name: Cosine Accuracy@10
235
+ - type: cosine_precision@1
236
+ value: 0.875
237
+ name: Cosine Precision@1
238
+ - type: cosine_precision@3
239
+ value: 0.3333333333333333
240
+ name: Cosine Precision@3
241
+ - type: cosine_precision@5
242
+ value: 0.20000000000000004
243
+ name: Cosine Precision@5
244
+ - type: cosine_precision@10
245
+ value: 0.10000000000000002
246
+ name: Cosine Precision@10
247
+ - type: cosine_recall@1
248
+ value: 0.875
249
+ name: Cosine Recall@1
250
+ - type: cosine_recall@3
251
+ value: 1.0
252
+ name: Cosine Recall@3
253
+ - type: cosine_recall@5
254
+ value: 1.0
255
+ name: Cosine Recall@5
256
+ - type: cosine_recall@10
257
+ value: 1.0
258
+ name: Cosine Recall@10
259
+ - type: cosine_ndcg@10
260
+ value: 0.9538662191964322
261
+ name: Cosine Ndcg@10
262
+ - type: cosine_mrr@10
263
+ value: 0.9375
264
+ name: Cosine Mrr@10
265
+ - type: cosine_map@100
266
+ value: 0.9375
267
+ name: Cosine Map@100
268
+ ---
269
+
270
+ # SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
271
+
272
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
273
+
274
+ ## Model Details
275
+
276
+ ### Model Description
277
+ - **Model Type:** Sentence Transformer
278
+ - **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision d8fb21ca8d905d2832ee8b96c894d3298964346b -->
279
+ - **Maximum Sequence Length:** 512 tokens
280
+ - **Output Dimensionality:** 1024 dimensions
281
+ - **Similarity Function:** Cosine Similarity
282
+ <!-- - **Training Dataset:** Unknown -->
283
+ <!-- - **Language:** Unknown -->
284
+ <!-- - **License:** Unknown -->
285
+
286
+ ### Model Sources
287
+
288
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
289
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
290
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
291
+
292
+ ### Full Model Architecture
293
+
294
+ ```
295
+ SentenceTransformer(
296
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
297
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
298
+ (2): Normalize()
299
+ )
300
+ ```
301
+
302
+ ## Usage
303
+
304
+ ### Direct Usage (Sentence Transformers)
305
+
306
+ First install the Sentence Transformers library:
307
+
308
+ ```bash
309
+ pip install -U sentence-transformers
310
+ ```
311
+
312
+ Then you can load this model and run inference.
313
+ ```python
314
+ from sentence_transformers import SentenceTransformer
315
+
316
+ # Download from the 🤗 Hub
317
+ model = SentenceTransformer("szybe/legal-ft-2")
318
+ # Run inference
319
+ sentences = [
320
+ 'What are the hardware requirements mentioned for running a model like GPT-4?',
321
+ 'This remains astonishing to me. I thought a model with the capabilities and output quality of GPT-4 needed a datacenter class server with one or more $40,000+ GPUs.\nThese models take up enough of my 64GB of RAM that I don’t run them often—they don’t leave much room for anything else.\nThe fact that they run at all is a testament to the incredible training and inference performance gains that we’ve figured out over the past year. It turns out there was a lot of low-hanging fruit to be harvested in terms of model efficiency. I expect there’s still more to come.',
322
+ 'Terminology aside, I remain skeptical as to their utility based, once again, on the challenge of gullibility. LLMs believe anything you tell them. Any systems that attempts to make meaningful decisions on your behalf will run into the same roadblock: how good is a travel agent, or a digital assistant, or even a research tool if it can’t distinguish truth from fiction?\nJust the other day Google Search was caught serving up an entirely fake description of the non-existant movie “Encanto 2”. It turned out to be summarizing an imagined movie listing from a fan fiction wiki.',
323
+ ]
324
+ embeddings = model.encode(sentences)
325
+ print(embeddings.shape)
326
+ # [3, 1024]
327
+
328
+ # Get the similarity scores for the embeddings
329
+ similarities = model.similarity(embeddings, embeddings)
330
+ print(similarities.shape)
331
+ # [3, 3]
332
+ ```
333
+
334
+ <!--
335
+ ### Direct Usage (Transformers)
336
+
337
+ <details><summary>Click to see the direct usage in Transformers</summary>
338
+
339
+ </details>
340
+ -->
341
+
342
+ <!--
343
+ ### Downstream Usage (Sentence Transformers)
344
+
345
+ You can finetune this model on your own dataset.
346
+
347
+ <details><summary>Click to expand</summary>
348
+
349
+ </details>
350
+ -->
351
+
352
+ <!--
353
+ ### Out-of-Scope Use
354
+
355
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
356
+ -->
357
+
358
+ ## Evaluation
359
+
360
+ ### Metrics
361
+
362
+ #### Information Retrieval
363
+
364
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
365
+
366
+ | Metric | Value |
367
+ |:--------------------|:-----------|
368
+ | cosine_accuracy@1 | 0.875 |
369
+ | cosine_accuracy@3 | 1.0 |
370
+ | cosine_accuracy@5 | 1.0 |
371
+ | cosine_accuracy@10 | 1.0 |
372
+ | cosine_precision@1 | 0.875 |
373
+ | cosine_precision@3 | 0.3333 |
374
+ | cosine_precision@5 | 0.2 |
375
+ | cosine_precision@10 | 0.1 |
376
+ | cosine_recall@1 | 0.875 |
377
+ | cosine_recall@3 | 1.0 |
378
+ | cosine_recall@5 | 1.0 |
379
+ | cosine_recall@10 | 1.0 |
380
+ | **cosine_ndcg@10** | **0.9539** |
381
+ | cosine_mrr@10 | 0.9375 |
382
+ | cosine_map@100 | 0.9375 |
383
+
384
+ <!--
385
+ ## Bias, Risks and Limitations
386
+
387
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
388
+ -->
389
+
390
+ <!--
391
+ ### Recommendations
392
+
393
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
394
+ -->
395
+
396
+ ## Training Details
397
+
398
+ ### Training Dataset
399
+
400
+ #### Unnamed Dataset
401
+
402
+ * Size: 156 training samples
403
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
404
+ * Approximate statistics based on the first 156 samples:
405
+ | | sentence_0 | sentence_1 |
406
+ |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
407
+ | type | string | string |
408
+ | details | <ul><li>min: 13 tokens</li><li>mean: 20.35 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 43 tokens</li><li>mean: 134.95 tokens</li><li>max: 214 tokens</li></ul> |
409
+ * Samples:
410
+ | sentence_0 | sentence_1 |
411
+ |:-----------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
412
+ | <code>What significant advancements in AI were made in 2023, particularly regarding Large Language Models (LLMs)?</code> | <code>Stuff we figured out about AI in 2023<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>Simon Willison’s Weblog<br>Subscribe<br><br><br><br><br><br><br>Stuff we figured out about AI in 2023<br>31st December 2023<br>2023 was the breakthrough year for Large Language Models (LLMs). I think it’s OK to call these AI—they’re the latest and (currently) most interesting development in the academic field of Artificial Intelligence that dates back to the 1950s.<br>Here’s my attempt to round up the highlights in one place!</code> |
413
+ | <code>How does the development of LLMs in 2023 relate to the historical context of Artificial Intelligence since the 1950s?</code> | <code>Stuff we figured out about AI in 2023<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>Simon Willison’s Weblog<br>Subscribe<br><br><br><br><br><br><br>Stuff we figured out about AI in 2023<br>31st December 2023<br>2023 was the breakthrough year for Large Language Models (LLMs). I think it’s OK to call these AI—they’re the latest and (currently) most interesting development in the academic field of Artificial Intelligence that dates back to the 1950s.<br>Here’s my attempt to round up the highlights in one place!</code> |
414
+ | <code>What are some potential applications of Large Language Models (LLMs) mentioned in the context?</code> | <code>Large Language Models<br>They’re actually quite easy to build<br>You can run LLMs on your own devices<br>Hobbyists can build their own fine-tuned models<br>We don’t yet know how to build GPT-4<br>Vibes Based Development<br>LLMs are really smart, and also really, really dumb<br>Gullibility is the biggest unsolved problem<br>Code may be the best application<br>The ethics of this space remain diabolically complex<br>My blog in 2023</code> |
415
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
416
+ ```json
417
+ {
418
+ "loss": "MultipleNegativesRankingLoss",
419
+ "matryoshka_dims": [
420
+ 768,
421
+ 512,
422
+ 256,
423
+ 128,
424
+ 64
425
+ ],
426
+ "matryoshka_weights": [
427
+ 1,
428
+ 1,
429
+ 1,
430
+ 1,
431
+ 1
432
+ ],
433
+ "n_dims_per_step": -1
434
+ }
435
+ ```
436
+
437
+ ### Training Hyperparameters
438
+ #### Non-Default Hyperparameters
439
+
440
+ - `eval_strategy`: steps
441
+ - `per_device_train_batch_size`: 10
442
+ - `per_device_eval_batch_size`: 10
443
+ - `num_train_epochs`: 10
444
+ - `multi_dataset_batch_sampler`: round_robin
445
+
446
+ #### All Hyperparameters
447
+ <details><summary>Click to expand</summary>
448
+
449
+ - `overwrite_output_dir`: False
450
+ - `do_predict`: False
451
+ - `eval_strategy`: steps
452
+ - `prediction_loss_only`: True
453
+ - `per_device_train_batch_size`: 10
454
+ - `per_device_eval_batch_size`: 10
455
+ - `per_gpu_train_batch_size`: None
456
+ - `per_gpu_eval_batch_size`: None
457
+ - `gradient_accumulation_steps`: 1
458
+ - `eval_accumulation_steps`: None
459
+ - `torch_empty_cache_steps`: None
460
+ - `learning_rate`: 5e-05
461
+ - `weight_decay`: 0.0
462
+ - `adam_beta1`: 0.9
463
+ - `adam_beta2`: 0.999
464
+ - `adam_epsilon`: 1e-08
465
+ - `max_grad_norm`: 1
466
+ - `num_train_epochs`: 10
467
+ - `max_steps`: -1
468
+ - `lr_scheduler_type`: linear
469
+ - `lr_scheduler_kwargs`: {}
470
+ - `warmup_ratio`: 0.0
471
+ - `warmup_steps`: 0
472
+ - `log_level`: passive
473
+ - `log_level_replica`: warning
474
+ - `log_on_each_node`: True
475
+ - `logging_nan_inf_filter`: True
476
+ - `save_safetensors`: True
477
+ - `save_on_each_node`: False
478
+ - `save_only_model`: False
479
+ - `restore_callback_states_from_checkpoint`: False
480
+ - `no_cuda`: False
481
+ - `use_cpu`: False
482
+ - `use_mps_device`: False
483
+ - `seed`: 42
484
+ - `data_seed`: None
485
+ - `jit_mode_eval`: False
486
+ - `use_ipex`: False
487
+ - `bf16`: False
488
+ - `fp16`: False
489
+ - `fp16_opt_level`: O1
490
+ - `half_precision_backend`: auto
491
+ - `bf16_full_eval`: False
492
+ - `fp16_full_eval`: False
493
+ - `tf32`: None
494
+ - `local_rank`: 0
495
+ - `ddp_backend`: None
496
+ - `tpu_num_cores`: None
497
+ - `tpu_metrics_debug`: False
498
+ - `debug`: []
499
+ - `dataloader_drop_last`: False
500
+ - `dataloader_num_workers`: 0
501
+ - `dataloader_prefetch_factor`: None
502
+ - `past_index`: -1
503
+ - `disable_tqdm`: False
504
+ - `remove_unused_columns`: True
505
+ - `label_names`: None
506
+ - `load_best_model_at_end`: False
507
+ - `ignore_data_skip`: False
508
+ - `fsdp`: []
509
+ - `fsdp_min_num_params`: 0
510
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
511
+ - `fsdp_transformer_layer_cls_to_wrap`: None
512
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
513
+ - `deepspeed`: None
514
+ - `label_smoothing_factor`: 0.0
515
+ - `optim`: adamw_torch
516
+ - `optim_args`: None
517
+ - `adafactor`: False
518
+ - `group_by_length`: False
519
+ - `length_column_name`: length
520
+ - `ddp_find_unused_parameters`: None
521
+ - `ddp_bucket_cap_mb`: None
522
+ - `ddp_broadcast_buffers`: False
523
+ - `dataloader_pin_memory`: True
524
+ - `dataloader_persistent_workers`: False
525
+ - `skip_memory_metrics`: True
526
+ - `use_legacy_prediction_loop`: False
527
+ - `push_to_hub`: False
528
+ - `resume_from_checkpoint`: None
529
+ - `hub_model_id`: None
530
+ - `hub_strategy`: every_save
531
+ - `hub_private_repo`: None
532
+ - `hub_always_push`: False
533
+ - `gradient_checkpointing`: False
534
+ - `gradient_checkpointing_kwargs`: None
535
+ - `include_inputs_for_metrics`: False
536
+ - `include_for_metrics`: []
537
+ - `eval_do_concat_batches`: True
538
+ - `fp16_backend`: auto
539
+ - `push_to_hub_model_id`: None
540
+ - `push_to_hub_organization`: None
541
+ - `mp_parameters`:
542
+ - `auto_find_batch_size`: False
543
+ - `full_determinism`: False
544
+ - `torchdynamo`: None
545
+ - `ray_scope`: last
546
+ - `ddp_timeout`: 1800
547
+ - `torch_compile`: False
548
+ - `torch_compile_backend`: None
549
+ - `torch_compile_mode`: None
550
+ - `dispatch_batches`: None
551
+ - `split_batches`: None
552
+ - `include_tokens_per_second`: False
553
+ - `include_num_input_tokens_seen`: False
554
+ - `neftune_noise_alpha`: None
555
+ - `optim_target_modules`: None
556
+ - `batch_eval_metrics`: False
557
+ - `eval_on_start`: False
558
+ - `use_liger_kernel`: False
559
+ - `eval_use_gather_object`: False
560
+ - `average_tokens_across_devices`: False
561
+ - `prompts`: None
562
+ - `batch_sampler`: batch_sampler
563
+ - `multi_dataset_batch_sampler`: round_robin
564
+
565
+ </details>
566
+
567
+ ### Training Logs
568
+ | Epoch | Step | cosine_ndcg@10 |
569
+ |:-----:|:----:|:--------------:|
570
+ | 1.0 | 16 | 0.9692 |
571
+ | 2.0 | 32 | 0.9692 |
572
+ | 3.0 | 48 | 0.9692 |
573
+ | 3.125 | 50 | 0.9539 |
574
+ | 4.0 | 64 | 0.9692 |
575
+ | 5.0 | 80 | 0.9692 |
576
+ | 6.0 | 96 | 0.9692 |
577
+ | 6.25 | 100 | 0.9539 |
578
+ | 7.0 | 112 | 0.9539 |
579
+ | 8.0 | 128 | 0.9539 |
580
+ | 9.0 | 144 | 0.9539 |
581
+ | 9.375 | 150 | 0.9539 |
582
+ | 10.0 | 160 | 0.9539 |
583
+
584
+
585
+ ### Framework Versions
586
+ - Python: 3.11.11
587
+ - Sentence Transformers: 3.4.1
588
+ - Transformers: 4.48.2
589
+ - PyTorch: 2.5.1+cu124
590
+ - Accelerate: 1.3.0
591
+ - Datasets: 3.2.0
592
+ - Tokenizers: 0.21.0
593
+
594
+ ## Citation
595
+
596
+ ### BibTeX
597
+
598
+ #### Sentence Transformers
599
+ ```bibtex
600
+ @inproceedings{reimers-2019-sentence-bert,
601
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
602
+ author = "Reimers, Nils and Gurevych, Iryna",
603
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
604
+ month = "11",
605
+ year = "2019",
606
+ publisher = "Association for Computational Linguistics",
607
+ url = "https://arxiv.org/abs/1908.10084",
608
+ }
609
+ ```
610
+
611
+ #### MatryoshkaLoss
612
+ ```bibtex
613
+ @misc{kusupati2024matryoshka,
614
+ title={Matryoshka Representation Learning},
615
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
616
+ year={2024},
617
+ eprint={2205.13147},
618
+ archivePrefix={arXiv},
619
+ primaryClass={cs.LG}
620
+ }
621
+ ```
622
+
623
+ #### MultipleNegativesRankingLoss
624
+ ```bibtex
625
+ @misc{henderson2017efficient,
626
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
627
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
628
+ year={2017},
629
+ eprint={1705.00652},
630
+ archivePrefix={arXiv},
631
+ primaryClass={cs.CL}
632
+ }
633
+ ```
634
+
635
+ <!--
636
+ ## Glossary
637
+
638
+ *Clearly define terms in order to be accessible across audiences.*
639
+ -->
640
+
641
+ <!--
642
+ ## Model Card Authors
643
+
644
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
645
+ -->
646
+
647
+ <!--
648
+ ## Model Card Contact
649
+
650
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
651
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Snowflake/snowflake-arctic-embed-l",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 1024,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 4096,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 16,
17
+ "num_hidden_layers": 24,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.48.2",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.2",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": "cosine"
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:370af415844761a825d4b9cc981fdcc11215794cb9791e8cf02114ecde387738
3
+ size 1336413848
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "[PAD]",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "[SEP]",
56
+ "stride": 0,
57
+ "strip_accents": null,
58
+ "tokenize_chinese_chars": true,
59
+ "tokenizer_class": "BertTokenizer",
60
+ "truncation_side": "right",
61
+ "truncation_strategy": "longest_first",
62
+ "unk_token": "[UNK]"
63
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff