Vadim Borisov commited on
Commit
6c841bb
1 Parent(s): 0946e0a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -27,14 +27,14 @@ pipeline_tag: text-classification
27
  # BERT-based Sentiment Classification Mode
28
 
29
  ## Model Details
30
- - **Model Name:** tabularisai/bert-base-uncased-sentiment-five-classes
31
  - **Base Model:** bert-base-uncased
32
  - **Task:** Text Classification (Sentiment Analysis)
33
  - **Language:** English
34
 
35
  ## Model Description
36
 
37
- This model is a fine-tuned version of `bert-base-uncased` for sentiment analysis. **Trained exclusively on syntethic data produced by SOTA LLMs: Llama3, Gemma2, and more**
38
 
39
  ### Training Data
40
 
@@ -62,7 +62,7 @@ from transformers import AutoTokenizer, AutoModelForSequenceClassification
62
  import torch
63
 
64
  # Load model and tokenizer
65
- model_name = "tabularisai/bert-base-uncased-sentiment-five-classes"
66
  tokenizer = AutoTokenizer.from_pretrained(model_name)
67
  model = AutoModelForSequenceClassification.from_pretrained(model_name)
68
 
@@ -133,7 +133,7 @@ The model demonstrates strong performance across various sentiment categories. H
133
  env.allowLocalModels = false;
134
  env.useCDN = true;
135
 
136
- const MODEL_NAME = 'tabularisai/bert-base-uncased-sentiment-five-classes';
137
 
138
  function softmax(arr) {
139
  const max = Math.max(...arr);
 
27
  # BERT-based Sentiment Classification Mode
28
 
29
  ## Model Details
30
+ - **Model Name:** tabularisai/robust_sentiment_analysis
31
  - **Base Model:** bert-base-uncased
32
  - **Task:** Text Classification (Sentiment Analysis)
33
  - **Language:** English
34
 
35
  ## Model Description
36
 
37
+ This model is a fine-tuned version of `bert-base-uncased` for sentiment analysis. **Trained only on syntethic data produced by SOTA LLMs: Llama3.1, Gemma2, and more**
38
 
39
  ### Training Data
40
 
 
62
  import torch
63
 
64
  # Load model and tokenizer
65
+ model_name = "tabularisai/robust_sentiment_analysis"
66
  tokenizer = AutoTokenizer.from_pretrained(model_name)
67
  model = AutoModelForSequenceClassification.from_pretrained(model_name)
68
 
 
133
  env.allowLocalModels = false;
134
  env.useCDN = true;
135
 
136
+ const MODEL_NAME = 'tabularisai/robust_sentiment_analysis';
137
 
138
  function softmax(arr) {
139
  const max = Math.max(...arr);