File size: 3,852 Bytes
28c838b 300ee94 28c838b 300ee94 28c838b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
# from https://github.com/lllyasviel/ControlNet/blob/main/gradio_canny2image.py
import einops
import numpy as np
import torch
from PIL import Image
import sys
import os
import yaml
CONTROL_NET_PATH = '/home/takuma/Documents/co/ControlNet-v1-1-nightly/'
CONTROL_NET_MODEL_PATH = '../../ControlNet-v1-1'
sys.path.append(CONTROL_NET_PATH)
from share import *
from pytorch_lightning import seed_everything
from cldm.model import create_model, load_state_dict
from cldm.ddim_hacked import DDIMSampler
from diffusers.utils import load_image
test_prompt = "best quality, extremely detailed"
test_negative_prompt = "lowres, bad anatomy, worst quality, low quality"
@torch.no_grad()
def generate(prompt, n_prompt, seed, control, ddim_steps=20, eta=0.0, scale=9.0, H=512, W=512, strength = 1.0, guess_mode=False):
seed_everything(seed)
cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt] * num_samples)]}
if model.global_average_pooling:
un_cond = {"c_concat": None, "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
else:
un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
shape = (4, H // 8, W // 8)
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
latent = torch.randn((1,) + shape, device="cpu", generator=torch.Generator(device="cpu").manual_seed(seed)).cuda()
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
shape, cond, x_T=latent,
verbose=False, eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond)
x_samples = model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
return Image.fromarray(x_samples[0])
def control_images(control_image_folder, model_name):
with open('./control_images.yaml', 'r') as f:
d = yaml.safe_load(f)
filenames = d[model_name]
return [Image.open(f'{control_image_folder}/{fn}').convert("RGB") for fn in filenames]
if __name__ == '__main__':
model_name = sys.argv[1]
control_image_folder = './control_images/converted/'
output_image_folder = './output_images/ref/'
os.makedirs(output_image_folder, exist_ok=True)
if model_name == 'p_sd15s2_lineart_anime':
base_model_file = 'anything-v3-full.safetensors'
else:
base_model_file = 'v1-5-pruned.ckpt'
num_samples = 1
model = create_model(f'{CONTROL_NET_MODEL_PATH}/control_v11{model_name}.yaml').cpu()
model.load_state_dict(load_state_dict(f'{CONTROL_NET_PATH}/models/{base_model_file}', location='cuda'), strict=False)
model.load_state_dict(load_state_dict(f'{CONTROL_NET_MODEL_PATH}/control_v11{model_name}.pth', location='cuda'), strict=False)
model = model.cuda()
ddim_sampler = DDIMSampler(model)
for i, control_image in enumerate(control_images(control_image_folder, model_name)):
control = np.array(control_image)[:,:,::-1].copy()
control = torch.from_numpy(control).float().cuda() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
for seed in range(4):
image = generate(test_prompt, test_negative_prompt, seed=seed, control=control)
image.save(f'{output_image_folder}output_{model_name}_{i}_{seed}.png')
|