# Diffusers' ControlNet Implementation Subjective Evaluation # https://github.com/takuma104/diffusers/tree/controlnet import einops import numpy as np import torch import sys import os from diffusers import StableDiffusionControlNetPipeline, ControlNetModel from PIL import Image test_prompt = "best quality, extremely detailed" test_negative_prompt = "lowres, bad anatomy, worst quality, low quality" def generate_image(seed, prompt, negative_prompt, control, guess_mode=False): latent = torch.randn((1,4,64,64), device="cpu", generator=torch.Generator(device="cpu").manual_seed(seed)).cuda() image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=9.0, num_inference_steps=20, latents=latent, #generator=torch.Generator(device="cuda").manual_seed(seed), image=control, guess_mode=guess_mode, ).images[0] return image if __name__ == '__main__': model_name = sys.argv[1] control_image_folder = '../gen_compare/control_images/converted/' output_image_folder = './output_images/diffusers/' os.makedirs(output_image_folder, exist_ok=True) model_id = f'lllyasviel/sd-controlnet-{model_name}' controlnet = ControlNetModel.from_pretrained(model_id) pipe = StableDiffusionControlNetPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", revision="non-ema", controlnet=controlnet, safety_checker=None).to("cuda") #pipe.enable_attention_slicing(1) image_types = {'bird', 'human', 'room', 'vermeer'} for image_type in image_types: control_image = Image.open(f'{control_image_folder}control_{image_type}_{model_name}.png') control = np.array(control_image)[:,:,::-1].copy() control = torch.from_numpy(control).float().cuda() / 255.0 control = torch.stack([control for _ in range(1)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() if model_name == 'normal': # workaround, this should not be necessary control = torch.flip(control, dims=[1]) # RGB -> BGR for seed in range(4): image = generate_image(seed=seed, prompt=test_prompt, negative_prompt=test_negative_prompt, control=control) image.save(f'{output_image_folder}output_{image_type}_{model_name}_{seed}.png') image = generate_image(seed=seed, prompt="", negative_prompt="", control=control, guess_mode=True) image.save(f'{output_image_folder}output_{image_type}_{model_name}_{seed}_gm.png') # image = generate_image(seed=seed, # prompt=test_prompt, # negative_prompt=test_negative_prompt, # control=control, # guess_mode=True) # image.save(f'{output_image_folder}output_{image_type}_{model_name}_{seed}_gm_wp.png')