git config
Browse files- .gitattributes +3 -0
- .gitignore +171 -0
- README.md +166 -0
.gitattributes
CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
results.json filter=lfs diff=lfs merge=lfs -text
|
38 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ---> Python
|
2 |
+
# Byte-compiled / optimized / DLL files
|
3 |
+
__pycache__/
|
4 |
+
*.py[cod]
|
5 |
+
*$py.class
|
6 |
+
|
7 |
+
# C extensions
|
8 |
+
*.so
|
9 |
+
|
10 |
+
# Distribution / packaging
|
11 |
+
.Python
|
12 |
+
build/
|
13 |
+
develop-eggs/
|
14 |
+
dist/
|
15 |
+
downloads/
|
16 |
+
eggs/
|
17 |
+
.eggs/
|
18 |
+
lib/
|
19 |
+
lib64/
|
20 |
+
parts/
|
21 |
+
sdist/
|
22 |
+
var/
|
23 |
+
wheels/
|
24 |
+
share/python-wheels/
|
25 |
+
*.egg-info/
|
26 |
+
.installed.cfg
|
27 |
+
*.egg
|
28 |
+
MANIFEST
|
29 |
+
|
30 |
+
# PyInstaller
|
31 |
+
# Usually these files are written by a python script from a template
|
32 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
33 |
+
*.manifest
|
34 |
+
*.spec
|
35 |
+
|
36 |
+
# Installer logs
|
37 |
+
pip-log.txt
|
38 |
+
pip-delete-this-directory.txt
|
39 |
+
|
40 |
+
# Unit test / coverage reports
|
41 |
+
htmlcov/
|
42 |
+
.tox/
|
43 |
+
.nox/
|
44 |
+
.coverage
|
45 |
+
.coverage.*
|
46 |
+
.cache
|
47 |
+
nosetests.xml
|
48 |
+
coverage.xml
|
49 |
+
*.cover
|
50 |
+
*.py,cover
|
51 |
+
.hypothesis/
|
52 |
+
.pytest_cache/
|
53 |
+
cover/
|
54 |
+
|
55 |
+
# Translations
|
56 |
+
*.mo
|
57 |
+
*.pot
|
58 |
+
|
59 |
+
# Django stuff:
|
60 |
+
*.log
|
61 |
+
local_settings.py
|
62 |
+
db.sqlite3
|
63 |
+
db.sqlite3-journal
|
64 |
+
|
65 |
+
# Flask stuff:
|
66 |
+
instance/
|
67 |
+
.webassets-cache
|
68 |
+
|
69 |
+
# Scrapy stuff:
|
70 |
+
.scrapy
|
71 |
+
|
72 |
+
# Sphinx documentation
|
73 |
+
docs/_build/
|
74 |
+
|
75 |
+
# PyBuilder
|
76 |
+
.pybuilder/
|
77 |
+
target/
|
78 |
+
|
79 |
+
# Jupyter Notebook
|
80 |
+
.ipynb_checkpoints
|
81 |
+
|
82 |
+
# IPython
|
83 |
+
profile_default/
|
84 |
+
ipython_config.py
|
85 |
+
|
86 |
+
# pyenv
|
87 |
+
# For a library or package, you might want to ignore these files since the code is
|
88 |
+
# intended to run in multiple environments; otherwise, check them in:
|
89 |
+
# .python-version
|
90 |
+
|
91 |
+
# pipenv
|
92 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
93 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
94 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
95 |
+
# install all needed dependencies.
|
96 |
+
#Pipfile.lock
|
97 |
+
|
98 |
+
# poetry
|
99 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
100 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
101 |
+
# commonly ignored for libraries.
|
102 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
103 |
+
#poetry.lock
|
104 |
+
|
105 |
+
# pdm
|
106 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
107 |
+
#pdm.lock
|
108 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
109 |
+
# in version control.
|
110 |
+
# https://pdm.fming.dev/#use-with-ide
|
111 |
+
.pdm.toml
|
112 |
+
|
113 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
114 |
+
__pypackages__/
|
115 |
+
|
116 |
+
# Celery stuff
|
117 |
+
celerybeat-schedule
|
118 |
+
celerybeat.pid
|
119 |
+
|
120 |
+
# SageMath parsed files
|
121 |
+
*.sage.py
|
122 |
+
|
123 |
+
# Environments
|
124 |
+
.env
|
125 |
+
.venv
|
126 |
+
env/
|
127 |
+
venv/
|
128 |
+
ENV/
|
129 |
+
env.bak/
|
130 |
+
venv.bak/
|
131 |
+
|
132 |
+
# Spyder project settings
|
133 |
+
.spyderproject
|
134 |
+
.spyproject
|
135 |
+
|
136 |
+
# Rope project settings
|
137 |
+
.ropeproject
|
138 |
+
|
139 |
+
# mkdocs documentation
|
140 |
+
/site
|
141 |
+
|
142 |
+
# mypy
|
143 |
+
.mypy_cache/
|
144 |
+
.dmypy.json
|
145 |
+
dmypy.json
|
146 |
+
|
147 |
+
# Pyre type checker
|
148 |
+
.pyre/
|
149 |
+
|
150 |
+
# pytype static type analyzer
|
151 |
+
.pytype/
|
152 |
+
|
153 |
+
# Cython debug symbols
|
154 |
+
cython_debug/
|
155 |
+
|
156 |
+
# PyCharm
|
157 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
158 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
159 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
160 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
161 |
+
.idea/
|
162 |
+
|
163 |
+
.DS_Store
|
164 |
+
.ruff_cache
|
165 |
+
venv*/
|
166 |
+
wandb*/
|
167 |
+
data/
|
168 |
+
pretrain-data/
|
169 |
+
contrain-data/
|
170 |
+
core-data-*/
|
171 |
+
out/pretrain-core/step-*/
|
README.md
CHANGED
@@ -1,3 +1,169 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
pipeline_tag: text-generation
|
4 |
+
library_name: transformers
|
5 |
+
language: [
|
6 |
+
'en', 'am', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'cs', 'cy', 'da', 'de', 'el',
|
7 |
+
'eo', 'es', 'et', 'eu', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gn', 'gu', 'ha', 'he',
|
8 |
+
'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko',
|
9 |
+
'ku', 'ky', 'la', 'lg', 'li', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my',
|
10 |
+
'ne', 'nl', 'no', 'ns', 'om', 'or', 'pa', 'pl', 'ps', 'pt', 'qu', 'rm', 'ro', 'ru', 'sa', 'si',
|
11 |
+
'sc', 'sd', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'te', 'th', 'tl', 'tn',
|
12 |
+
'tr', 'ug', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zu',
|
13 |
+
]
|
14 |
+
datasets:
|
15 |
+
# core - base
|
16 |
+
- ontocord/fineweb-permissive-multilingual-2m
|
17 |
+
- distily/c4_multilingual_1M
|
18 |
+
- data-silence/sumnews
|
19 |
+
- xu-song/cc100-samples
|
20 |
+
- badrex/llm-emoji-dataset
|
21 |
+
- fblgit/simple-math
|
22 |
+
- Gusarich/math-expressions-1m
|
23 |
+
- neuralwork/arxiver
|
24 |
+
- christopher/rosetta-code
|
25 |
+
- nampdn-ai/tiny-codes
|
26 |
+
- JeanKaddour/minipile
|
27 |
+
# core - instruct
|
28 |
+
- NousResearch/hermes-function-calling-v1
|
29 |
+
- simplescaling/s1K-1.1
|
30 |
+
# base - instruct
|
31 |
+
- mlabonne/open-perfectblend
|
32 |
+
- allenai/tulu-3-sft-mixture
|
33 |
+
- rombodawg/Everything_Instruct_Multilingual
|
34 |
+
# base - reason
|
35 |
+
- open-r1/OpenR1-Math-220k
|
36 |
+
- open-thoughts/OpenThoughts-114k
|
37 |
+
- cognitivecomputations/dolphin-r1
|
38 |
+
- simplescaling/s1K-1.1
|
39 |
+
tags:
|
40 |
+
- chat
|
41 |
+
- core
|
42 |
+
- base
|
43 |
+
- instruct
|
44 |
+
- reason
|
45 |
---
|
46 |
+
|
47 |
+
# tangled-alpha-0.6-core
|
48 |
+
|
49 |
+

|
50 |
+
|
51 |
+
```bash
|
52 |
+
time python -B prepare_core_datasets.py
|
53 |
+
```
|
54 |
+
|
55 |
+
```
|
56 |
+
i=0, min_len=0, max_len=1073741824, block_size=4097, chunk_size=16388000, len(dataset)=1287403, len(dataset) * block_size=5274490091
|
57 |
+
Total number of tokens in the optimized dataset '../core-data-0-0-1073741824-4097-4000' is 5274490091
|
58 |
+
|
59 |
+
```
|
60 |
+
|
61 |
+
```bash
|
62 |
+
CUDA_VISIBLE_DEVICES=0 CUDA_LAUNCH_BLOCKING=0 PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True litgpt pretrain --config pretrain_core_model.yaml
|
63 |
+
```
|
64 |
+
|
65 |
+
```
|
66 |
+
Seed set to 23
|
67 |
+
Time to instantiate model: 0.31 seconds.
|
68 |
+
Total parameters: 201,359,872
|
69 |
+
Verifying settings ...
|
70 |
+
Measured TFLOPs: 7072.06
|
71 |
+
Epoch 1 | iter 256 step 1 | loss train: 11.961, val: n/a | iter time: 406.23 ms (step) remaining time: 3 days, 13:55:33
|
72 |
+
Epoch 1 | iter 512 step 2 | loss train: 11.953, val: n/a | iter time: 358.84 ms (step) remaining time: 3 days, 0:49:32
|
73 |
+
Epoch 1 | iter 768 step 3 | loss train: 11.943, val: n/a | iter time: 357.16 ms (step) remaining time: 2 days, 20:38:36
|
74 |
+
Epoch 1 | iter 1024 step 4 | loss train: 11.907, val: n/a | iter time: 355.69 ms (step) remaining time: 2 days, 18:31:54
|
75 |
+
Epoch 1 | iter 1280 step 5 | loss train: 11.854, val: n/a | iter time: 358.32 ms (step) remaining time: 2 days, 17:13:13
|
76 |
+
Epoch 1 | iter 1536 step 6 | loss train: 11.789, val: n/a | iter time: 355.59 ms (step) remaining time: 2 days, 16:18:25
|
77 |
+
Epoch 1 | iter 1792 step 7 | loss train: 11.703, val: n/a | iter time: 354.88 ms (step) remaining time: 2 days, 15:37:56
|
78 |
+
Epoch 1 | iter 2048 step 8 | loss train: 11.586, val: n/a | iter time: 354.07 ms (step) remaining time: 2 days, 15:06:45
|
79 |
+
Epoch 1 | iter 2304 step 9 | loss train: 11.451, val: n/a | iter time: 352.89 ms (step) remaining time: 2 days, 14:41:54
|
80 |
+
Epoch 1 | iter 2560 step 10 | loss train: 11.347, val: n/a | iter time: 355.58 ms (step) remaining time: 2 days, 14:21:38
|
81 |
+
Epoch 1 | iter 2816 step 11 | loss train: 11.271, val: n/a | iter time: 351.01 ms (step) remaining time: 2 days, 14:04:43
|
82 |
+
Epoch 1 | iter 3072 step 12 | loss train: 11.194, val: n/a | iter time: 351.91 ms (step) remaining time: 2 days, 13:50:26
|
83 |
+
Epoch 1 | iter 3328 step 13 | loss train: 11.151, val: n/a | iter time: 353.02 ms (step) remaining time: 2 days, 13:38:04
|
84 |
+
Epoch 1 | iter 3584 step 14 | loss train: 11.097, val: n/a | iter time: 353.75 ms (step) remaining time: 2 days, 13:27:21
|
85 |
+
Epoch 1 | iter 3840 step 15 | loss train: 11.064, val: n/a | iter time: 358.31 ms (step) remaining time: 2 days, 13:17:48
|
86 |
+
Epoch 1 | iter 4096 step 16 | loss train: 11.008, val: n/a | iter time: 351.95 ms (step) remaining time: 2 days, 13:09:17
|
87 |
+
Epoch 1 | iter 4352 step 17 | loss train: 10.997, val: n/a | iter time: 352.26 ms (step) remaining time: 2 days, 13:01:35
|
88 |
+
Epoch 1 | iter 4608 step 18 | loss train: 10.951, val: n/a | iter time: 352.57 ms (step) remaining time: 2 days, 12:54:35
|
89 |
+
Epoch 1 | iter 4864 step 19 | loss train: 10.902, val: n/a | iter time: 354.73 ms (step) remaining time: 2 days, 12:48:13
|
90 |
+
Epoch 1 | iter 5120 step 20 | loss train: 10.877, val: n/a | iter time: 354.47 ms (step) remaining time: 2 days, 12:43:19
|
91 |
+
Epoch 1 | iter 5376 step 21 | loss train: 10.830, val: n/a | iter time: 353.78 ms (step) remaining time: 2 days, 12:37:49
|
92 |
+
Epoch 1 | iter 5632 step 22 | loss train: 10.809, val: n/a | iter time: 355.03 ms (step) remaining time: 2 days, 12:32:44
|
93 |
+
Epoch 1 | iter 5888 step 23 | loss train: 10.727, val: n/a | iter time: 351.49 ms (step) remaining time: 2 days, 12:27:56
|
94 |
+
Epoch 1 | iter 6144 step 24 | loss train: 10.707, val: n/a | iter time: 351.58 ms (step) remaining time: 2 days, 12:23:24
|
95 |
+
Epoch 1 | iter 6400 step 25 | loss train: 10.643, val: n/a | iter time: 350.84 ms (step) remaining time: 2 days, 12:19:10
|
96 |
+
Epoch 1 | iter 6656 step 26 | loss train: 10.649, val: n/a | iter time: 355.14 ms (step) remaining time: 2 days, 12:15:07
|
97 |
+
Epoch 1 | iter 6912 step 27 | loss train: 10.580, val: n/a | iter time: 352.60 ms (step) remaining time: 2 days, 12:11:12
|
98 |
+
Epoch 1 | iter 7168 step 28 | loss train: 10.554, val: n/a | iter time: 351.57 ms (step) remaining time: 2 days, 12:07:27
|
99 |
+
Epoch 1 | iter 7424 step 29 | loss train: 10.526, val: n/a | iter time: 350.36 ms (step) remaining time: 2 days, 12:03:55
|
100 |
+
Epoch 1 | iter 7680 step 30 | loss train: 10.496, val: n/a | iter time: 353.19 ms (step) remaining time: 2 days, 12:00:34
|
101 |
+
Epoch 1 | iter 7936 step 31 | loss train: 10.496, val: n/a | iter time: 350.95 ms (step) remaining time: 2 days, 11:57:21
|
102 |
+
Epoch 1 | iter 8192 step 32 | loss train: 10.421, val: n/a | iter time: 352.71 ms (step) remaining time: 2 days, 11:54:18
|
103 |
+
Epoch 1 | iter 8448 step 33 | loss train: 10.379, val: n/a | iter time: 354.15 ms (step) remaining time: 2 days, 11:51:21
|
104 |
+
Epoch 1 | iter 8704 step 34 | loss train: 10.343, val: n/a | iter time: 353.95 ms (step) remaining time: 2 days, 11:48:29
|
105 |
+
Epoch 1 | iter 8960 step 35 | loss train: 10.353, val: n/a | iter time: 351.04 ms (step) remaining time: 2 days, 11:45:44
|
106 |
+
Epoch 1 | iter 9216 step 36 | loss train: 10.323, val: n/a | iter time: 354.76 ms (step) remaining time: 2 days, 11:43:05
|
107 |
+
Epoch 1 | iter 9472 step 37 | loss train: 10.258, val: n/a | iter time: 353.18 ms (step) remaining time: 2 days, 11:40:29
|
108 |
+
Epoch 1 | iter 9728 step 38 | loss train: 10.260, val: n/a | iter time: 353.86 ms (step) remaining time: 2 days, 11:37:57
|
109 |
+
Epoch 1 | iter 9984 step 39 | loss train: 10.257, val: n/a | iter time: 356.14 ms (step) remaining time: 2 days, 11:35:50
|
110 |
+
Epoch 1 | iter 10240 step 40 | loss train: 10.179, val: n/a | iter time: 353.73 ms (step) remaining time: 2 days, 11:33:23
|
111 |
+
Epoch 1 | iter 10496 step 41 | loss train: 10.163, val: n/a | iter time: 350.49 ms (step) remaining time: 2 days, 11:30:59
|
112 |
+
Epoch 1 | iter 10752 step 42 | loss train: 10.156, val: n/a | iter time: 354.15 ms (step) remaining time: 2 days, 11:28:40
|
113 |
+
Epoch 1 | iter 11008 step 43 | loss train: 10.150, val: n/a | iter time: 350.99 ms (step) remaining time: 2 days, 11:26:24
|
114 |
+
Epoch 1 | iter 11264 step 44 | loss train: 10.089, val: n/a | iter time: 354.28 ms (step) remaining time: 2 days, 11:24:09
|
115 |
+
Epoch 1 | iter 11520 step 45 | loss train: 10.096, val: n/a | iter time: 352.46 ms (step) remaining time: 2 days, 11:21:56
|
116 |
+
Epoch 1 | iter 11776 step 46 | loss train: 10.021, val: n/a | iter time: 356.80 ms (step) remaining time: 2 days, 11:19:45
|
117 |
+
Epoch 1 | iter 12032 step 47 | loss train: 10.002, val: n/a | iter time: 355.30 ms (step) remaining time: 2 days, 11:17:36
|
118 |
+
Epoch 1 | iter 12288 step 48 | loss train: 10.021, val: n/a | iter time: 355.12 ms (step) remaining time: 2 days, 11:15:32
|
119 |
+
Epoch 1 | iter 12544 step 49 | loss train: 10.017, val: n/a | iter time: 353.81 ms (step) remaining time: 2 days, 11:13:29
|
120 |
+
Epoch 1 | iter 12800 step 50 | loss train: 9.966, val: n/a | iter time: 354.70 ms (step) remaining time: 2 days, 11:11:26
|
121 |
+
# ...
|
122 |
+
Epoch 1 | iter 640256 step 2501 | loss train: 2.875, val: 2.786 | iter time: 348.10 ms (step) remaining time: 0:19:39
|
123 |
+
Epoch 1 | iter 640512 step 2502 | loss train: 2.885, val: 2.786 | iter time: 349.50 ms (step) remaining time: 0:18:15
|
124 |
+
Epoch 1 | iter 640768 step 2503 | loss train: 2.857, val: 2.786 | iter time: 347.05 ms (step) remaining time: 0:16:52
|
125 |
+
Epoch 1 | iter 641024 step 2504 | loss train: 2.925, val: 2.786 | iter time: 347.38 ms (step) remaining time: 0:15:28
|
126 |
+
Epoch 1 | iter 641280 step 2505 | loss train: 2.882, val: 2.786 | iter time: 346.76 ms (step) remaining time: 0:14:04
|
127 |
+
Epoch 1 | iter 641536 step 2506 | loss train: 2.875, val: 2.786 | iter time: 348.08 ms (step) remaining time: 0:12:40
|
128 |
+
Epoch 1 | iter 641792 step 2507 | loss train: 2.979, val: 2.786 | iter time: 349.34 ms (step) remaining time: 0:11:16
|
129 |
+
Epoch 1 | iter 642048 step 2508 | loss train: 2.971, val: 2.786 | iter time: 348.34 ms (step) remaining time: 0:09:52
|
130 |
+
Epoch 1 | iter 642304 step 2509 | loss train: 2.991, val: 2.786 | iter time: 347.89 ms (step) remaining time: 0:08:28
|
131 |
+
Epoch 1 | iter 642560 step 2510 | loss train: 2.999, val: 2.786 | iter time: 349.61 ms (step) remaining time: 0:07:05
|
132 |
+
Epoch 1 | iter 642816 step 2511 | loss train: 3.013, val: 2.786 | iter time: 349.54 ms (step) remaining time: 0:05:41
|
133 |
+
Epoch 1 | iter 643072 step 2512 | loss train: 2.923, val: 2.786 | iter time: 348.39 ms (step) remaining time: 0:04:17
|
134 |
+
Epoch 1 | iter 643328 step 2513 | loss train: 2.986, val: 2.786 | iter time: 347.26 ms (step) remaining time: 0:02:53
|
135 |
+
Epoch 1 | iter 643584 step 2514 | loss train: 2.939, val: 2.786 | iter time: 348.31 ms (step) remaining time: 0:01:29
|
136 |
+
Epoch 2 | iter 643840 step 2515 | loss train: 2.835, val: 2.786 | iter time: 349.08 ms (step) remaining time: 0:00:05
|
137 |
+
Validating ...
|
138 |
+
Final evaluation | val loss: 2.786 | val ppl: 16.208
|
139 |
+
Saving checkpoint to '../out/pretrain-core/final/lit_model.pth'
|
140 |
+
----------------------------------------
|
141 |
+
| Performance
|
142 |
+
| - Total tokens : 5,274,484,736
|
143 |
+
| - Training Time : 210925.61 s
|
144 |
+
| - Tok/sec : 8533.19 tok/s
|
145 |
+
| ----------------------------------------
|
146 |
+
| Memory Usage
|
147 |
+
| - Memory Used : 20.44 GB
|
148 |
+
----------------------------------------
|
149 |
+
```
|
150 |
+
|
151 |
+
Backup `wandb`:
|
152 |
+
|
153 |
+
```bash
|
154 |
+
mv wandb wandb-pretrain-core
|
155 |
+
```
|
156 |
+
|
157 |
+
Chat with model:
|
158 |
+
|
159 |
+
```bash
|
160 |
+
CUDA_VISIBLE_DEVICES=0 CUDA_LAUNCH_BLOCKING=0 PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True litgpt chat ../out/pretrain-core/final
|
161 |
+
```
|
162 |
+
|
163 |
+
```bash
|
164 |
+
CUDA_VISIBLE_DEVICES=0 CUDA_LAUNCH_BLOCKING=0 PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True time litgpt evaluate --tasks 'leaderboard' --out_dir '../evaluate/pretrain-core-0/leaderboard/' --batch_size 1 --dtype 'bfloat16' '../out/pretrain-core/final'
|
165 |
+
```
|
166 |
+
|
167 |
+
```
|
168 |
+
# ...
|
169 |
+
```
|