|
import math
|
|
import torch
|
|
import torch.nn as nn
|
|
from collections import OrderedDict
|
|
|
|
|
|
def conv3x3(in_channels: int, out_channels: int, stride: int = 1) -> nn.Conv2d:
|
|
return nn.Conv2d(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=3,
|
|
stride=stride,
|
|
padding=1,
|
|
bias=False
|
|
)
|
|
|
|
|
|
def downsample_basic_block(
|
|
in_channels: int,
|
|
out_channels: int,
|
|
stride: int,
|
|
) -> nn.Sequential:
|
|
return nn.Sequential(
|
|
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
|
|
nn.BatchNorm2d(out_channels),
|
|
)
|
|
|
|
|
|
def downsample_basic_block_v2(
|
|
in_channels: int,
|
|
out_channels: int,
|
|
stride: int,
|
|
) -> nn.Sequential:
|
|
return nn.Sequential(
|
|
nn.AvgPool2d(
|
|
kernel_size=stride,
|
|
stride=stride,
|
|
ceil_mode=True,
|
|
count_include_pad=False,
|
|
),
|
|
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False),
|
|
nn.BatchNorm2d(out_channels),
|
|
)
|
|
|
|
|
|
class BasicBlock(nn.Module):
|
|
expansion = 1
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
channels: int,
|
|
stride: int = 1,
|
|
downsample: nn.Sequential = None,
|
|
relu_type: str = "relu",
|
|
) -> None:
|
|
super(BasicBlock, self).__init__()
|
|
assert relu_type in ["relu", "prelu"]
|
|
|
|
self.conv1 = conv3x3(in_channels, channels, stride)
|
|
self.bn1 = nn.BatchNorm2d(channels)
|
|
|
|
if relu_type == "relu":
|
|
self.relu1 = nn.ReLU(inplace=True)
|
|
self.relu2 = nn.ReLU(inplace=True)
|
|
elif relu_type == "prelu":
|
|
self.relu1 = nn.PReLU(num_parameters=channels)
|
|
self.relu2 = nn.PReLU(num_parameters=channels)
|
|
else:
|
|
raise Exception("relu type not implemented")
|
|
|
|
self.conv2 = conv3x3(channels, channels)
|
|
self.bn2 = nn.BatchNorm2d(channels)
|
|
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
residual = x
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
out = self.relu1(out)
|
|
out = self.conv2(out)
|
|
out = self.bn2(out)
|
|
if self.downsample is not None:
|
|
residual = self.downsample(x)
|
|
out += residual
|
|
out = self.relu2(out)
|
|
return out
|
|
|
|
|
|
class ResNet(nn.Module):
|
|
def __init__(
|
|
self,
|
|
block: nn.Module,
|
|
layers: list,
|
|
relu_type: str = "relu",
|
|
gamma_zero: bool = False,
|
|
avg_pool_downsample: bool = False,
|
|
) -> None:
|
|
self.in_channels = 64
|
|
self.relu_type = relu_type
|
|
self.gamma_zero = gamma_zero
|
|
self.downsample_block = (
|
|
downsample_basic_block_v2 if avg_pool_downsample else downsample_basic_block
|
|
)
|
|
|
|
super(ResNet, self).__init__()
|
|
self.layer1 = self._make_layer(block, 64, layers[0])
|
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
|
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
|
|
self.avgpool = nn.AdaptiveAvgPool2d(1)
|
|
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
|
m.weight.data.normal_(0, math.sqrt(2.0 / n))
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
m.weight.data.fill_(1)
|
|
m.bias.data.zero_()
|
|
|
|
if self.gamma_zero:
|
|
for m in self.modules():
|
|
if isinstance(m, BasicBlock):
|
|
m.bn2.weight.data.zero_()
|
|
|
|
def _make_layer(
|
|
self,
|
|
block: nn.Module,
|
|
channels: int,
|
|
n_blocks: int,
|
|
stride: int = 1,
|
|
) -> nn.Sequential:
|
|
downsample = None
|
|
if stride != 1 or self.in_channels != channels * block.expansion:
|
|
downsample = self.downsample_block(
|
|
in_channels=self.in_channels,
|
|
out_channels=channels * block.expansion,
|
|
stride=stride,
|
|
)
|
|
|
|
layers = [
|
|
block(
|
|
self.in_channels, channels, stride, downsample, relu_type=self.relu_type
|
|
)
|
|
]
|
|
self.in_channels = channels * block.expansion
|
|
for _ in range(1, n_blocks):
|
|
layers.append(block(self.in_channels, channels, relu_type=self.relu_type))
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = self.layer1(x)
|
|
x = self.layer2(x)
|
|
x = self.layer3(x)
|
|
x = self.layer4(x)
|
|
x = self.avgpool(x)
|
|
x = x.view(x.size(0), -1)
|
|
return x
|
|
|
|
|
|
class ResNetEncoder(nn.Module):
|
|
def __init__(self, relu_type: str, weight_file: str = None) -> None:
|
|
super(ResNetEncoder, self).__init__()
|
|
self.frontend_out = 64
|
|
self.backend_out = 512
|
|
frontend_relu = (
|
|
nn.PReLU(num_parameters=self.frontend_out)
|
|
if relu_type == "prelu"
|
|
else nn.ReLU()
|
|
)
|
|
|
|
self.frontend3D = nn.Sequential(
|
|
nn.Conv3d(
|
|
1,
|
|
self.frontend_out,
|
|
kernel_size=(5, 7, 7),
|
|
stride=(1, 2, 2),
|
|
padding=(2, 3, 3),
|
|
bias=False,
|
|
),
|
|
nn.BatchNorm3d(self.frontend_out),
|
|
frontend_relu,
|
|
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1)),
|
|
)
|
|
self.trunk = ResNet(BasicBlock, [2, 2, 2, 2], relu_type=relu_type)
|
|
|
|
if weight_file is not None:
|
|
model_state_dict = torch.load(weight_file, map_location=torch.device("cpu"))
|
|
model_state_dict = model_state_dict["model_state_dict"]
|
|
frontend_state_dict, trunk_state_dict = OrderedDict(), OrderedDict()
|
|
for key, val in model_state_dict.items():
|
|
new_key = ".".join(key.split(".")[1:])
|
|
if "frontend3D" in key:
|
|
frontend_state_dict[new_key] = val
|
|
if "trunk" in key:
|
|
trunk_state_dict[new_key] = val
|
|
self.frontend3D.load_state_dict(frontend_state_dict)
|
|
self.trunk.load_state_dict(trunk_state_dict)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
B, C, T, H, W = x.size()
|
|
x = self.frontend3D(x)
|
|
Tnew = x.shape[2]
|
|
x = self.convert_3D_to_2D(x)
|
|
x = self.trunk(x)
|
|
x = x.view(B, Tnew, x.size(1))
|
|
x = x.transpose(1, 2).contiguous()
|
|
return x
|
|
|
|
def convert_3D_to_2D(self, x: torch.Tensor) -> torch.Tensor:
|
|
n_batches, n_channels, s_time, sx, sy = x.shape
|
|
x = x.transpose(1, 2).contiguous()
|
|
return x.reshape(n_batches * s_time, n_channels, sx, sy)
|
|
|