File size: 3,888 Bytes
9f2af33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
---
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: katuni4ka/tiny-random-falcon-40b
model-index:
- name: 6b56e209-c5f4-43e6-9e59-373c47939a73
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: katuni4ka/tiny-random-falcon-40b
batch_size: 2
bf16: auto
dataset_prepared_path: null
datasets:
- data_files:
  - ab2fc8caa89864d9_train_data.json
  ds_type: json
  format: custom
  path: ab2fc8caa89864d9_train_data.json
  type:
    field: null
    field_input: statements
    field_instruction: quiz
    field_output: solution_text
    field_system: null
    format: null
    no_input_format: null
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
evals_per_epoch: 0
flash_attention: null
fp16: null
fsdp: null
fsdp_config: null
gptq: false
gptq_groupsize: null
gptq_model_v1: null
gradient_checkpointing: true
group_by_length: false
hub_model_id: taopanda-1/6b56e209-c5f4-43e6-9e59-373c47939a73
learning_rate: 3.0e-05
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.0
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules: null
lr_scheduler: cosine
max_packed_sequence_len: null
micro_batch_size: 1
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: ./outputs/falcon-7b/taopanda-1_1d550d29-f74b-42e2-a40e-b5d8a39cd793
push_dataset_to_hub: null
resume_from_checkpoint: null
saves_per_epoch: 1
seed: 37596
sequence_len: 2048
special_tokens:
  pad_token: <|endoftext|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
torchdistx_path: null
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: fatcat87-taopanda
wandb_log_model: null
wandb_mode: online
wandb_name: taopanda-1_1d550d29-f74b-42e2-a40e-b5d8a39cd793
wandb_project: subnet56
wandb_runid: taopanda-1_1d550d29-f74b-42e2-a40e-b5d8a39cd793
wandb_watch: null
warmup_steps: 40
weight_decay: 0.0
xformers_attention: true

```

</details><br>

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/fatcat87-taopanda/subnet56/runs/8j9yoqro)
# 6b56e209-c5f4-43e6-9e59-373c47939a73

This model is a fine-tuned version of [katuni4ka/tiny-random-falcon-40b](https://huggingface.co/katuni4ka/tiny-random-falcon-40b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 9.2955

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 37596
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 40
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 9.2744        | 1.0   | 1425 | 9.2955          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1