File size: 3,592 Bytes
3006b83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
---
license: apache-2.0
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: EleutherAI/pythia-70m-deduped
model-index:
- name: acbb1a42-ee1a-4f43-8d91-590e5bee174b
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: EleutherAI/pythia-70m-deduped
bf16: auto
dataset_prepared_path: null
datasets:
- data_files:
- 5ffb1cd632063e99_train_data.json
ds_type: json
format: custom
path: 5ffb1cd632063e99_train_data.json
type:
field: null
field_input: products
field_instruction: package_name
field_output: review
field_system: null
format: null
no_input_format: null
system_format: '{system}'
system_prompt: ''
early_stopping_patience: null
evals_per_epoch: 3
gradient_accumulation_steps: 1
group_by_length: false
hub_model_id: taopanda/acbb1a42-ee1a-4f43-8d91-590e5bee174b
learning_rate: 1.0e-05
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 16
lora_target_linear: null
lora_target_modules:
- query_key_value
micro_batch_size: 4
num_epochs: 1
output_dir: ./outputs/lora-alpaca-pythia/taopanda-2_09727a6d-45b3-498d-acc5-f6482fa2f484
resume_from_checkpoint: null
seed: 32340
sequence_len: 512
special_tokens:
pad_token: <|endoftext|>
tf32: true
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: fatcat87-taopanda
wandb_log_model: null
wandb_mode: online
wandb_name: taopanda-2_09727a6d-45b3-498d-acc5-f6482fa2f484
wandb_project: subnet56
wandb_runid: taopanda-2_09727a6d-45b3-498d-acc5-f6482fa2f484
wandb_watch: null
weight_decay: 0.1
```
</details><br>
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/fatcat87-taopanda/subnet56/runs/6dz0jvb8)
# acbb1a42-ee1a-4f43-8d91-590e5bee174b
This model is a fine-tuned version of [EleutherAI/pythia-70m-deduped](https://huggingface.co/EleutherAI/pythia-70m-deduped) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 9.4757
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 32340
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 85.4855 | 0.0001 | 1 | 120.7302 |
| 10.6107 | 0.3334 | 5700 | 10.8087 |
| 9.7219 | 0.6667 | 11400 | 9.4757 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |