|
from typing import Dict, List, Any |
|
from PIL import Image |
|
import torch |
|
import base64 |
|
import os |
|
from io import BytesIO |
|
import json |
|
|
|
import sys |
|
CODE_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), "code") |
|
sys.path.append(CODE_PATH) |
|
from clip.model import CLIP |
|
from clip.clip import _transform, tokenize |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
def preprocess_image(image_base64, transformer): |
|
"""Convert base64 encoded sketch to tensor.""" |
|
image = Image.open(BytesIO(base64.b64decode(image_base64))).convert("RGB") |
|
image = transformer(image).unsqueeze(0).to(device) |
|
return image |
|
|
|
def preprocess_text(text): |
|
"""Tokenize text query.""" |
|
return tokenize([str(text)])[0].unsqueeze(0).to(device) |
|
|
|
def get_fused_embedding(sketch_base64, text, model, transformer): |
|
"""Fuse sketch and text features into a single embedding.""" |
|
with torch.no_grad(): |
|
sketch_tensor = preprocess_image(sketch_base64, transformer) |
|
text_tensor = preprocess_text(text) |
|
|
|
sketch_feature = model.encode_sketch(sketch_tensor) |
|
text_feature = model.encode_text(text_tensor) |
|
|
|
sketch_feature = sketch_feature / sketch_feature.norm(dim=-1, keepdim=True) |
|
text_feature = text_feature / text_feature.norm(dim=-1, keepdim=True) |
|
|
|
fused_embedding = model.feature_fuse(sketch_feature, text_feature) |
|
return fused_embedding.cpu().numpy().tolist() |
|
|
|
def get_image_embedding(image_base64, model, transformer): |
|
"""Convert base64 encoded image to tensor.""" |
|
image_tensor = preprocess_image(image_base64, transformer) |
|
with torch.no_grad(): |
|
image_feature = model.encode_image(image_tensor) |
|
image_feature = image_feature / image_feature.norm(dim=-1, keepdim=True) |
|
return image_feature.cpu().numpy().tolist() |
|
|
|
def get_text_embedding(text, model): |
|
"""Convert text query to tensor.""" |
|
text_tensor = preprocess_text(text) |
|
with torch.no_grad(): |
|
text_feature = model.encode_text(text_tensor) |
|
text_feature = text_feature / text_feature.norm(dim=-1, keepdim=True) |
|
return text_feature.cpu().numpy().tolist() |
|
|
|
class EndpointHandler: |
|
def __init__(self, path: str = ""): |
|
""" |
|
Initialize the pipeline by loading the model. |
|
Args: |
|
path (str): Path to the directory containing model weights and config. |
|
""" |
|
model_config_file = os.path.join(path, "code/training/model_configs/ViT-B-16.json") |
|
with open(model_config_file, "r") as f: |
|
model_info = json.load(f) |
|
|
|
model_file = os.path.join(path, "model/tsbir_model_final.pt") |
|
self.model = CLIP(**model_info) |
|
checkpoint = torch.load(model_file, map_location=device) |
|
|
|
sd = checkpoint["state_dict"] |
|
if next(iter(sd.items()))[0].startswith("module"): |
|
sd = {k[len("module."):]: v for k, v in sd.items()} |
|
|
|
self.model.load_state_dict(sd, strict=False) |
|
self.model = self.model.to(device).eval() |
|
|
|
|
|
self.transform = _transform(self.model.visual.input_resolution, is_train=False) |
|
|
|
def __call__(self, data: Any) -> Dict[str, List[float]]: |
|
""" |
|
Process the request and return the fused embedding. |
|
Args: |
|
data (dict): Includes 'sketch' (base64) and 'text' (str) inputs, or 'image' (base64) |
|
Returns: |
|
dict: {"embedding": [float, float, ...]} |
|
""" |
|
|
|
inputs = data.pop("inputs", data) |
|
|
|
if len(inputs) == 2 and "sketch" in inputs and "text" in inputs: |
|
sketch_base64 = inputs.get("sketch", "") |
|
text_query = inputs.get("text", "") |
|
if not sketch_base64 or not text_query: |
|
return {"error": "Both 'sketch' (base64) and 'text' are required inputs."} |
|
|
|
|
|
fused_embedding = get_fused_embedding(sketch_base64, text_query, self.model, self.transform) |
|
return {"embedding": fused_embedding} |
|
|
|
elif len(inputs) == 1 and "image" in inputs: |
|
image_base64 = inputs.get("image", "") |
|
if not image_base64: |
|
return {"error": "Image 'image' (base64) is required input."} |
|
embedding = get_image_embedding(image_base64, self.model, self.transform) |
|
return {"embedding": embedding} |
|
|
|
elif len(inputs) == 1 and "text" in inputs: |
|
text_query = inputs.get("text", "") |
|
if not text_query: |
|
return {"error": "Text 'text' is required input."} |
|
embedding = get_text_embedding(text_query, self.model) |
|
return {"embedding": embedding} |
|
else: |
|
return {"error": "Invalid request."} |
|
|