Patsorn
commited on
Commit
·
1858f7e
1
Parent(s):
d91fc09
update code
Browse files- code/clip/bpe_simple_vocab_16e6.txt.gz +3 -0
- code/clip/clip.py +232 -0
- code/clip/model.py +506 -0
- code/clip/tokenizer.py +140 -0
- code/training/model_configs/ViT-B-16.json +12 -0
code/clip/bpe_simple_vocab_16e6.txt.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a
|
3 |
+
size 1356917
|
code/clip/clip.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Code ported from https://github.com/openai/CLIP
|
2 |
+
|
3 |
+
import hashlib
|
4 |
+
import os
|
5 |
+
import urllib
|
6 |
+
import warnings
|
7 |
+
from typing import Union, List
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from PIL import Image
|
11 |
+
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize, RandomResizedCrop, RandomAffine
|
12 |
+
from tqdm import tqdm
|
13 |
+
|
14 |
+
from clip.model import build_model
|
15 |
+
from clip.tokenizer import SimpleTokenizer as _Tokenizer
|
16 |
+
|
17 |
+
__all__ = ["available_models", "load", "tokenize"]
|
18 |
+
_tokenizer = _Tokenizer()
|
19 |
+
|
20 |
+
_MODELS = {
|
21 |
+
"RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
|
22 |
+
"RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
|
23 |
+
"RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
|
24 |
+
"ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
|
25 |
+
"ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
def _download(url: str, root: str = os.path.expanduser("~/.cache/clip")):
|
30 |
+
os.makedirs(root, exist_ok=True)
|
31 |
+
filename = os.path.basename(url)
|
32 |
+
|
33 |
+
expected_sha256 = url.split("/")[-2]
|
34 |
+
download_target = os.path.join(root, filename)
|
35 |
+
|
36 |
+
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
37 |
+
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
38 |
+
|
39 |
+
if os.path.isfile(download_target):
|
40 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
|
41 |
+
return download_target
|
42 |
+
else:
|
43 |
+
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
|
44 |
+
|
45 |
+
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
46 |
+
with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True) as loop:
|
47 |
+
while True:
|
48 |
+
buffer = source.read(8192)
|
49 |
+
if not buffer:
|
50 |
+
break
|
51 |
+
|
52 |
+
output.write(buffer)
|
53 |
+
loop.update(len(buffer))
|
54 |
+
|
55 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
|
56 |
+
raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match")
|
57 |
+
|
58 |
+
return download_target
|
59 |
+
|
60 |
+
def _convert_to_rgb(image):
|
61 |
+
return image.convert('RGB')
|
62 |
+
|
63 |
+
def _transform(n_px: int, is_train: bool, affine: bool = False):
|
64 |
+
normalize = Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
65 |
+
if is_train:
|
66 |
+
if affine:
|
67 |
+
return Compose([
|
68 |
+
RandomAffine(degrees=30,translate=(0.3,0.3),shear =[-30,30,-30,30], scale=(1,2), fill=255, interpolation=Image.BICUBIC),
|
69 |
+
RandomResizedCrop(n_px, scale=(0.8, 1.0), interpolation=Image.BICUBIC),
|
70 |
+
_convert_to_rgb,
|
71 |
+
ToTensor(),
|
72 |
+
normalize,
|
73 |
+
])
|
74 |
+
else:
|
75 |
+
return Compose([
|
76 |
+
RandomResizedCrop(n_px, scale=(0.9, 1.0), interpolation=Image.BICUBIC),
|
77 |
+
_convert_to_rgb,
|
78 |
+
ToTensor(),
|
79 |
+
normalize,
|
80 |
+
])
|
81 |
+
else:
|
82 |
+
return Compose([
|
83 |
+
Resize(n_px, interpolation=Image.BICUBIC),
|
84 |
+
CenterCrop(n_px),
|
85 |
+
_convert_to_rgb,
|
86 |
+
ToTensor(),
|
87 |
+
normalize,
|
88 |
+
])
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
def available_models() -> List[str]:
|
93 |
+
"""Returns the names of available CLIP models"""
|
94 |
+
return list(_MODELS.keys())
|
95 |
+
|
96 |
+
|
97 |
+
def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit=True, is_train=False, pretrained=True, weight_sharing=False, feature_fusion='avg', affine_transformation=False, num_class=None):
|
98 |
+
"""Load a CLIP model
|
99 |
+
Parameters
|
100 |
+
----------
|
101 |
+
name : str
|
102 |
+
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
|
103 |
+
device : Union[str, torch.device]
|
104 |
+
The device to put the loaded model
|
105 |
+
jit : bool
|
106 |
+
Whether to load the optimized JIT model (default) or more hackable non-JIT model.
|
107 |
+
Returns
|
108 |
+
-------
|
109 |
+
model : torch.nn.Module
|
110 |
+
The CLIP model
|
111 |
+
preprocess : Callable[[PIL.Image], torch.Tensor]
|
112 |
+
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
|
113 |
+
"""
|
114 |
+
assert num_class is not None
|
115 |
+
if name in _MODELS:
|
116 |
+
model_path = _download(_MODELS[name])
|
117 |
+
elif os.path.isfile(name):
|
118 |
+
model_path = name
|
119 |
+
else:
|
120 |
+
raise RuntimeError(f"Model {name} not found; available models = {available_models()}")
|
121 |
+
|
122 |
+
try:
|
123 |
+
# loading JIT archive
|
124 |
+
model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval()
|
125 |
+
state_dict = None
|
126 |
+
except RuntimeError:
|
127 |
+
# loading saved state dict
|
128 |
+
if jit:
|
129 |
+
warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
|
130 |
+
jit = False
|
131 |
+
state_dict = torch.load(model_path, map_location="cpu")
|
132 |
+
|
133 |
+
if not jit:
|
134 |
+
try:
|
135 |
+
model = build_model(state_dict or model.state_dict(), weight_sharing, feature_fusion, num_class = num_class).to(device)
|
136 |
+
except KeyError:
|
137 |
+
sd = {k[7:]: v for k,v in state_dict["state_dict"].items()}
|
138 |
+
model = build_model(sd, weight_sharing, feature_fusion, num_class=num_class).to(device)
|
139 |
+
|
140 |
+
if str(device) == "cpu":
|
141 |
+
model.float()
|
142 |
+
return model, \
|
143 |
+
_transform(model.visual.input_resolution, is_train=True, affine=affine_transformation), \
|
144 |
+
_transform(model.visual.input_resolution, is_train=False)
|
145 |
+
#sanity check to make sure we are not loading up old version of networks directly
|
146 |
+
assert model.visual2 is not None
|
147 |
+
# patch the device names
|
148 |
+
device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
|
149 |
+
device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
|
150 |
+
|
151 |
+
def patch_device(module):
|
152 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
153 |
+
if hasattr(module, "forward1"):
|
154 |
+
graphs.append(module.forward1.graph)
|
155 |
+
|
156 |
+
for graph in graphs:
|
157 |
+
for node in graph.findAllNodes("prim::Constant"):
|
158 |
+
if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"):
|
159 |
+
node.copyAttributes(device_node)
|
160 |
+
|
161 |
+
#load sketch branch
|
162 |
+
weight_sharing = model.weight_sharing
|
163 |
+
if weight_sharing:
|
164 |
+
model.visual2 = model.visual
|
165 |
+
else:
|
166 |
+
#copy weight from image branch
|
167 |
+
sd1 = model.visual.state_dict()
|
168 |
+
sd2 = model.visual2.state_dict()
|
169 |
+
for name, param in sd1.items():
|
170 |
+
assert name in sd2
|
171 |
+
sd2[name].copy_(param)
|
172 |
+
|
173 |
+
model.apply(patch_device)
|
174 |
+
patch_device(model.encode_image)
|
175 |
+
patch_device(model.encode_text)
|
176 |
+
|
177 |
+
# patch dtype to float32 on CPU
|
178 |
+
if str(device) == "cpu":
|
179 |
+
float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
|
180 |
+
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
|
181 |
+
float_node = float_input.node()
|
182 |
+
|
183 |
+
def patch_float(module):
|
184 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
185 |
+
if hasattr(module, "forward1"):
|
186 |
+
graphs.append(module.forward1.graph)
|
187 |
+
|
188 |
+
for graph in graphs:
|
189 |
+
for node in graph.findAllNodes("aten::to"):
|
190 |
+
inputs = list(node.inputs())
|
191 |
+
for i in [1, 2]: # dtype can be the second or third argument to aten::to()
|
192 |
+
if inputs[i].node()["value"] == 5:
|
193 |
+
inputs[i].node().copyAttributes(float_node)
|
194 |
+
|
195 |
+
model.apply(patch_float)
|
196 |
+
patch_float(model.encode_image)
|
197 |
+
patch_float(model.encode_text)
|
198 |
+
|
199 |
+
model.float()
|
200 |
+
|
201 |
+
return model, \
|
202 |
+
_transform(model.input_resolution.item(), is_train=True, affine=affine_transformation), \
|
203 |
+
_transform(model.input_resolution.item(), is_train=False)
|
204 |
+
|
205 |
+
|
206 |
+
def tokenize(texts: Union[str, List[str]], context_length: int = 77) -> torch.LongTensor:
|
207 |
+
"""
|
208 |
+
Returns the tokenized representation of given input string(s)
|
209 |
+
Parameters
|
210 |
+
----------
|
211 |
+
texts : Union[str, List[str]]
|
212 |
+
An input string or a list of input strings to tokenize
|
213 |
+
context_length : int
|
214 |
+
The context length to use; all CLIP models use 77 as the context length
|
215 |
+
Returns
|
216 |
+
-------
|
217 |
+
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
|
218 |
+
"""
|
219 |
+
if isinstance(texts, str):
|
220 |
+
texts = [texts]
|
221 |
+
|
222 |
+
sot_token = _tokenizer.encoder["<start_of_text>"]
|
223 |
+
eot_token = _tokenizer.encoder["<end_of_text>"]
|
224 |
+
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
|
225 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
226 |
+
|
227 |
+
for i, tokens in enumerate(all_tokens):
|
228 |
+
if len(tokens) > context_length: # Truncate
|
229 |
+
tokens = tokens[:context_length]
|
230 |
+
result[i, :len(tokens)] = torch.tensor(tokens)
|
231 |
+
|
232 |
+
return result
|
code/clip/model.py
ADDED
@@ -0,0 +1,506 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
from typing import Tuple, Union
|
3 |
+
|
4 |
+
import os
|
5 |
+
import json
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from torch import nn
|
10 |
+
|
11 |
+
|
12 |
+
class Bottleneck(nn.Module):
|
13 |
+
expansion = 4
|
14 |
+
|
15 |
+
def __init__(self, inplanes, planes, stride=1):
|
16 |
+
super().__init__()
|
17 |
+
|
18 |
+
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
|
19 |
+
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
|
20 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
21 |
+
|
22 |
+
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
|
23 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
24 |
+
|
25 |
+
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
|
26 |
+
|
27 |
+
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
|
28 |
+
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
29 |
+
|
30 |
+
self.relu = nn.ReLU(inplace=True)
|
31 |
+
self.downsample = None
|
32 |
+
self.stride = stride
|
33 |
+
|
34 |
+
if stride > 1 or inplanes != planes * Bottleneck.expansion:
|
35 |
+
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
|
36 |
+
self.downsample = nn.Sequential(OrderedDict([
|
37 |
+
("-1", nn.AvgPool2d(stride)),
|
38 |
+
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
|
39 |
+
("1", nn.BatchNorm2d(planes * self.expansion))
|
40 |
+
]))
|
41 |
+
|
42 |
+
def forward(self, x: torch.Tensor):
|
43 |
+
identity = x
|
44 |
+
|
45 |
+
out = self.relu(self.bn1(self.conv1(x)))
|
46 |
+
out = self.relu(self.bn2(self.conv2(out)))
|
47 |
+
out = self.avgpool(out)
|
48 |
+
out = self.bn3(self.conv3(out))
|
49 |
+
|
50 |
+
if self.downsample is not None:
|
51 |
+
identity = self.downsample(x)
|
52 |
+
|
53 |
+
out += identity
|
54 |
+
out = self.relu(out)
|
55 |
+
return out
|
56 |
+
|
57 |
+
|
58 |
+
class AttentionPool2d(nn.Module):
|
59 |
+
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
|
60 |
+
super().__init__()
|
61 |
+
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
|
62 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
63 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
64 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
65 |
+
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
66 |
+
self.num_heads = num_heads
|
67 |
+
|
68 |
+
def forward(self, x):
|
69 |
+
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
|
70 |
+
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
71 |
+
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
72 |
+
x, _ = F.multi_head_attention_forward(
|
73 |
+
query=x, key=x, value=x,
|
74 |
+
embed_dim_to_check=x.shape[-1],
|
75 |
+
num_heads=self.num_heads,
|
76 |
+
q_proj_weight=self.q_proj.weight,
|
77 |
+
k_proj_weight=self.k_proj.weight,
|
78 |
+
v_proj_weight=self.v_proj.weight,
|
79 |
+
in_proj_weight=None,
|
80 |
+
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
81 |
+
bias_k=None,
|
82 |
+
bias_v=None,
|
83 |
+
add_zero_attn=False,
|
84 |
+
dropout_p=0,
|
85 |
+
out_proj_weight=self.c_proj.weight,
|
86 |
+
out_proj_bias=self.c_proj.bias,
|
87 |
+
use_separate_proj_weight=True,
|
88 |
+
training=self.training,
|
89 |
+
need_weights=False
|
90 |
+
)
|
91 |
+
|
92 |
+
return x[0]
|
93 |
+
|
94 |
+
|
95 |
+
class ModifiedResNet(nn.Module):
|
96 |
+
"""
|
97 |
+
A ResNet class that is similar to torchvision's but contains the following changes:
|
98 |
+
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
|
99 |
+
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
|
100 |
+
- The final pooling layer is a QKV attention instead of an average pool
|
101 |
+
"""
|
102 |
+
|
103 |
+
def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
|
104 |
+
super().__init__()
|
105 |
+
self.output_dim = output_dim
|
106 |
+
self.input_resolution = input_resolution
|
107 |
+
|
108 |
+
# the 3-layer stem
|
109 |
+
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
|
110 |
+
self.bn1 = nn.BatchNorm2d(width // 2)
|
111 |
+
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
|
112 |
+
self.bn2 = nn.BatchNorm2d(width // 2)
|
113 |
+
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
|
114 |
+
self.bn3 = nn.BatchNorm2d(width)
|
115 |
+
self.avgpool = nn.AvgPool2d(2)
|
116 |
+
self.relu = nn.ReLU(inplace=True)
|
117 |
+
|
118 |
+
# residual layers
|
119 |
+
self._inplanes = width # this is a *mutable* variable used during construction
|
120 |
+
self.layer1 = self._make_layer(width, layers[0])
|
121 |
+
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
|
122 |
+
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
|
123 |
+
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
|
124 |
+
|
125 |
+
embed_dim = width * 32 # the ResNet feature dimension
|
126 |
+
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
|
127 |
+
|
128 |
+
def _make_layer(self, planes, blocks, stride=1):
|
129 |
+
layers = [Bottleneck(self._inplanes, planes, stride)]
|
130 |
+
|
131 |
+
self._inplanes = planes * Bottleneck.expansion
|
132 |
+
for _ in range(1, blocks):
|
133 |
+
layers.append(Bottleneck(self._inplanes, planes))
|
134 |
+
|
135 |
+
return nn.Sequential(*layers)
|
136 |
+
|
137 |
+
def forward(self, x):
|
138 |
+
def stem(x):
|
139 |
+
for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]:
|
140 |
+
x = self.relu(bn(conv(x)))
|
141 |
+
x = self.avgpool(x)
|
142 |
+
return x
|
143 |
+
|
144 |
+
x = x.type(self.conv1.weight.dtype)
|
145 |
+
x = stem(x)
|
146 |
+
x = self.layer1(x)
|
147 |
+
x = self.layer2(x)
|
148 |
+
x = self.layer3(x)
|
149 |
+
x = self.layer4(x)
|
150 |
+
x = self.attnpool(x)
|
151 |
+
|
152 |
+
return x
|
153 |
+
|
154 |
+
|
155 |
+
class LayerNorm(nn.LayerNorm):
|
156 |
+
"""Subclass torch's LayerNorm to handle fp16."""
|
157 |
+
|
158 |
+
def forward(self, x: torch.Tensor):
|
159 |
+
orig_type = x.dtype
|
160 |
+
ret = super().forward(x.type(torch.float32))
|
161 |
+
return ret.type(orig_type)
|
162 |
+
|
163 |
+
|
164 |
+
class QuickGELU(nn.Module):
|
165 |
+
def forward(self, x: torch.Tensor):
|
166 |
+
return x * torch.sigmoid(1.702 * x)
|
167 |
+
|
168 |
+
|
169 |
+
class ResidualAttentionBlock(nn.Module):
|
170 |
+
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
|
171 |
+
super().__init__()
|
172 |
+
|
173 |
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
174 |
+
self.ln_1 = LayerNorm(d_model)
|
175 |
+
self.mlp = nn.Sequential(OrderedDict([
|
176 |
+
("c_fc", nn.Linear(d_model, d_model * 4)),
|
177 |
+
("gelu", QuickGELU()),
|
178 |
+
("c_proj", nn.Linear(d_model * 4, d_model))
|
179 |
+
]))
|
180 |
+
self.ln_2 = LayerNorm(d_model)
|
181 |
+
self.attn_mask = attn_mask
|
182 |
+
|
183 |
+
def attention(self, x: torch.Tensor):
|
184 |
+
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
|
185 |
+
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
|
186 |
+
|
187 |
+
def forward(self, x: torch.Tensor):
|
188 |
+
x = x + self.attention(self.ln_1(x))
|
189 |
+
x = x + self.mlp(self.ln_2(x))
|
190 |
+
return x
|
191 |
+
|
192 |
+
|
193 |
+
class Transformer(nn.Module):
|
194 |
+
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
|
195 |
+
super().__init__()
|
196 |
+
self.width = width
|
197 |
+
self.layers = layers
|
198 |
+
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
|
199 |
+
|
200 |
+
def forward(self, x: torch.Tensor):
|
201 |
+
return self.resblocks(x)
|
202 |
+
|
203 |
+
|
204 |
+
class VisualTransformer(nn.Module):
|
205 |
+
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int):
|
206 |
+
super().__init__()
|
207 |
+
self.input_resolution = input_resolution
|
208 |
+
self.output_dim = output_dim
|
209 |
+
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
|
210 |
+
|
211 |
+
scale = width ** -0.5
|
212 |
+
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
213 |
+
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
|
214 |
+
self.ln_pre = LayerNorm(width)
|
215 |
+
|
216 |
+
self.transformer = Transformer(width, layers, heads)
|
217 |
+
|
218 |
+
self.ln_post = LayerNorm(width)
|
219 |
+
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
|
220 |
+
|
221 |
+
def forward(self, x: torch.Tensor):
|
222 |
+
x = self.conv1(x) # shape = [*, width, grid, grid]
|
223 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
224 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
225 |
+
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
226 |
+
x = x + self.positional_embedding.to(x.dtype)
|
227 |
+
x = self.ln_pre(x)
|
228 |
+
|
229 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
230 |
+
x = self.transformer(x)
|
231 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
232 |
+
|
233 |
+
x = self.ln_post(x[:, 0, :])
|
234 |
+
|
235 |
+
if self.proj is not None:
|
236 |
+
x = x @ self.proj
|
237 |
+
|
238 |
+
return x
|
239 |
+
|
240 |
+
|
241 |
+
from x_transformers.autoregressive_wrapper import AutoregressiveWrapper
|
242 |
+
from x_transformers import ViTransformerWrapper, TransformerWrapper, Encoder, Decoder
|
243 |
+
|
244 |
+
class CLIP(nn.Module):
|
245 |
+
def __init__(self,
|
246 |
+
embed_dim: int,
|
247 |
+
# vision
|
248 |
+
image_resolution: int,
|
249 |
+
vision_layers: Union[Tuple[int, int, int, int], int],
|
250 |
+
vision_width: int,
|
251 |
+
vision_patch_size: int,
|
252 |
+
# text
|
253 |
+
context_length: int,
|
254 |
+
vocab_size: int,
|
255 |
+
transformer_width: int,
|
256 |
+
transformer_heads: int,
|
257 |
+
transformer_layers: int,
|
258 |
+
|
259 |
+
weight_sharing: bool = False,
|
260 |
+
feature_fusion: str = 'avg',
|
261 |
+
num_class: int = 90
|
262 |
+
):
|
263 |
+
super().__init__()
|
264 |
+
#set default to weight sharing
|
265 |
+
if weight_sharing is None:
|
266 |
+
weight_sharing = False
|
267 |
+
|
268 |
+
self.weight_sharing = weight_sharing
|
269 |
+
self.feature_fusion = feature_fusion
|
270 |
+
self.context_length = context_length
|
271 |
+
|
272 |
+
if isinstance(vision_layers, (tuple, list)):
|
273 |
+
vision_heads = vision_width * 32 // 64
|
274 |
+
self.visual = ModifiedResNet(
|
275 |
+
layers=vision_layers,
|
276 |
+
output_dim=embed_dim,
|
277 |
+
heads=vision_heads,
|
278 |
+
input_resolution=image_resolution,
|
279 |
+
width=vision_width
|
280 |
+
)
|
281 |
+
if weight_sharing:
|
282 |
+
self.visual2 = self.visual
|
283 |
+
else:
|
284 |
+
self.visual2= ModifiedResNet(
|
285 |
+
layers=vision_layers,
|
286 |
+
output_dim=embed_dim,
|
287 |
+
heads=vision_heads,
|
288 |
+
input_resolution=image_resolution,
|
289 |
+
width=vision_width
|
290 |
+
)
|
291 |
+
else:
|
292 |
+
vision_heads = vision_width // 64
|
293 |
+
self.visual = VisualTransformer(
|
294 |
+
input_resolution=image_resolution,
|
295 |
+
patch_size=vision_patch_size,
|
296 |
+
width=vision_width,
|
297 |
+
layers=vision_layers,
|
298 |
+
heads=vision_heads,
|
299 |
+
output_dim=embed_dim
|
300 |
+
)
|
301 |
+
if weight_sharing:
|
302 |
+
self.visual2 = self.visual
|
303 |
+
else:
|
304 |
+
self.visual2 = VisualTransformer(
|
305 |
+
input_resolution=image_resolution,
|
306 |
+
patch_size=vision_patch_size,
|
307 |
+
width=vision_width,
|
308 |
+
layers=vision_layers,
|
309 |
+
heads=vision_heads,
|
310 |
+
output_dim=embed_dim
|
311 |
+
)
|
312 |
+
|
313 |
+
self.transformer = Transformer(
|
314 |
+
width=transformer_width,
|
315 |
+
layers=transformer_layers,
|
316 |
+
heads=transformer_heads,
|
317 |
+
attn_mask=self.build_attention_mask()
|
318 |
+
)
|
319 |
+
|
320 |
+
self.vocab_size = vocab_size
|
321 |
+
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
|
322 |
+
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
|
323 |
+
self.ln_final = LayerNorm(transformer_width)
|
324 |
+
|
325 |
+
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
|
326 |
+
|
327 |
+
|
328 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
329 |
+
|
330 |
+
self.initialize_parameters()
|
331 |
+
|
332 |
+
def initialize_parameters(self):
|
333 |
+
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
334 |
+
nn.init.normal_(self.positional_embedding, std=0.01)
|
335 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
336 |
+
|
337 |
+
|
338 |
+
if isinstance(self.visual, ModifiedResNet):
|
339 |
+
if self.visual.attnpool is not None:
|
340 |
+
std = self.visual.attnpool.c_proj.in_features ** -0.5
|
341 |
+
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
|
342 |
+
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
|
343 |
+
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
|
344 |
+
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
|
345 |
+
|
346 |
+
if not self.weight_sharing:
|
347 |
+
nn.init.normal_(self.visual2.attnpool.q_proj.weight, std=std)
|
348 |
+
nn.init.normal_(self.visual2.attnpool.k_proj.weight, std=std)
|
349 |
+
nn.init.normal_(self.visual2.attnpool.v_proj.weight, std=std)
|
350 |
+
nn.init.normal_(self.visual2.attnpool.c_proj.weight, std=std)
|
351 |
+
|
352 |
+
for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
|
353 |
+
for name, param in resnet_block.named_parameters():
|
354 |
+
if name.endswith("bn3.weight"):
|
355 |
+
nn.init.zeros_(param)
|
356 |
+
if not self.weight_sharing:
|
357 |
+
for resnet_block in [self.visual2.layer1, self.visual2.layer2, self.visual2.layer3, self.visual2.layer4]:
|
358 |
+
for name, param in resnet_block.named_parameters():
|
359 |
+
if name.endswith("bn3.weight"):
|
360 |
+
nn.init.zeros_(param)
|
361 |
+
|
362 |
+
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
|
363 |
+
attn_std = self.transformer.width ** -0.5
|
364 |
+
fc_std = (2 * self.transformer.width) ** -0.5
|
365 |
+
for block in self.transformer.resblocks:
|
366 |
+
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
367 |
+
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
368 |
+
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
369 |
+
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
370 |
+
|
371 |
+
if self.text_projection is not None:
|
372 |
+
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
|
373 |
+
|
374 |
+
def build_attention_mask(self):
|
375 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
376 |
+
# pytorch uses additive attention mask; fill with -inf
|
377 |
+
mask = torch.empty(self.context_length, self.context_length)
|
378 |
+
mask.fill_(float("-inf"))
|
379 |
+
mask.triu_(1) # zero out the lower diagonal
|
380 |
+
return mask
|
381 |
+
|
382 |
+
@property
|
383 |
+
def dtype(self):
|
384 |
+
return self.visual.conv1.weight.dtype
|
385 |
+
def decode(self,caption, encode):
|
386 |
+
return self.decoder(caption,context=encode)
|
387 |
+
def encode_image(self, image):
|
388 |
+
return self.visual(image.type(self.dtype))
|
389 |
+
def encode_sketch(self, image):
|
390 |
+
return self.visual2(image.type(self.dtype))
|
391 |
+
|
392 |
+
def encode_text(self, text):
|
393 |
+
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
|
394 |
+
|
395 |
+
x = x + self.positional_embedding.type(self.dtype)
|
396 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
397 |
+
x = self.transformer(x)
|
398 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
399 |
+
x = self.ln_final(x).type(self.dtype)
|
400 |
+
|
401 |
+
# x.shape = [batch_size, n_ctx, transformer.width]
|
402 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
403 |
+
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
404 |
+
|
405 |
+
return x
|
406 |
+
def freeze_nonfc(self):
|
407 |
+
for name, param in self.named_parameters():
|
408 |
+
if 'classification' not in name:# and 'visual' not in name:
|
409 |
+
param.requires_grad = False
|
410 |
+
else:
|
411 |
+
param.requires_grad = True
|
412 |
+
|
413 |
+
return
|
414 |
+
def unfreeze_nonfc(self):
|
415 |
+
for name, param in self.named_parameters():
|
416 |
+
if 'classification' not in name:# and 'visual' not in name:
|
417 |
+
param.requires_grad = True
|
418 |
+
|
419 |
+
return
|
420 |
+
def forward(self, image, text, sketch):
|
421 |
+
|
422 |
+
image_features = self.encode_image(image)
|
423 |
+
text_features = self.encode_text(text)
|
424 |
+
sketch_features = self.encode_sketch(sketch)
|
425 |
+
|
426 |
+
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
427 |
+
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
|
428 |
+
sketch_features = sketch_features / sketch_features.norm(dim=-1, keepdim=True)
|
429 |
+
|
430 |
+
fused_feature = self.feature_fuse(text_features,sketch_features)
|
431 |
+
|
432 |
+
return image_features, fused_feature
|
433 |
+
|
434 |
+
def feature_fuse(self, text_features, sketch_features):
|
435 |
+
#mode = avg|max
|
436 |
+
if self.feature_fusion == 'avg':
|
437 |
+
fused_features = (text_features + sketch_features)/2
|
438 |
+
else:
|
439 |
+
raise Exception(f'Mode {self.feature_fusion} not yet supported')
|
440 |
+
return fused_features
|
441 |
+
|
442 |
+
def convert_weights(model: nn.Module):
|
443 |
+
"""Convert applicable model parameters to fp16"""
|
444 |
+
|
445 |
+
def _convert_weights_to_fp16(l):
|
446 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
447 |
+
l.weight.data = l.weight.data.half()
|
448 |
+
if l.bias is not None:
|
449 |
+
l.bias.data = l.bias.data.half()
|
450 |
+
|
451 |
+
if isinstance(l, nn.MultiheadAttention):
|
452 |
+
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
|
453 |
+
tensor = getattr(l, attr)
|
454 |
+
if tensor is not None:
|
455 |
+
tensor.data = tensor.data.half()
|
456 |
+
|
457 |
+
for name in ["text_projection", "proj"]:
|
458 |
+
if hasattr(l, name):
|
459 |
+
attr = getattr(l, name)
|
460 |
+
if attr is not None:
|
461 |
+
attr.data = attr.data.half()
|
462 |
+
|
463 |
+
model.apply(_convert_weights_to_fp16)
|
464 |
+
|
465 |
+
|
466 |
+
def build_model(state_dict: dict, weight_sharing: bool, feature_fusion: str, num_class: int):
|
467 |
+
vit = "visual.proj" in state_dict
|
468 |
+
|
469 |
+
if vit:
|
470 |
+
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
471 |
+
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
472 |
+
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
473 |
+
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
474 |
+
image_resolution = vision_patch_size * grid_size
|
475 |
+
else:
|
476 |
+
counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
|
477 |
+
vision_layers = tuple(counts)
|
478 |
+
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
479 |
+
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
|
480 |
+
vision_patch_size = None
|
481 |
+
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
|
482 |
+
image_resolution = output_width * 32
|
483 |
+
|
484 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
485 |
+
context_length = state_dict["positional_embedding"].shape[0]
|
486 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
487 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
488 |
+
transformer_heads = transformer_width // 64
|
489 |
+
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
|
490 |
+
|
491 |
+
model = CLIP(
|
492 |
+
embed_dim,
|
493 |
+
image_resolution, vision_layers, vision_width, vision_patch_size,
|
494 |
+
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers,
|
495 |
+
weight_sharing, feature_fusion,
|
496 |
+
num_class=num_class
|
497 |
+
)
|
498 |
+
|
499 |
+
for key in ["input_resolution", "context_length", "vocab_size"]:
|
500 |
+
if key in state_dict:
|
501 |
+
del state_dict[key]
|
502 |
+
|
503 |
+
convert_weights(model)
|
504 |
+
#TODO: only do strict=false when loading from state with 'visual2' branch
|
505 |
+
model.load_state_dict(state_dict, strict=False)
|
506 |
+
return model.eval()
|
code/clip/tokenizer.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gzip
|
2 |
+
import html
|
3 |
+
import os
|
4 |
+
from functools import lru_cache
|
5 |
+
|
6 |
+
import ftfy
|
7 |
+
import regex as re
|
8 |
+
|
9 |
+
|
10 |
+
@lru_cache()
|
11 |
+
def default_bpe():
|
12 |
+
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
|
13 |
+
|
14 |
+
|
15 |
+
@lru_cache()
|
16 |
+
def bytes_to_unicode():
|
17 |
+
"""
|
18 |
+
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
19 |
+
The reversible bpe codes work on unicode strings.
|
20 |
+
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
21 |
+
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
22 |
+
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
23 |
+
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
24 |
+
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
25 |
+
"""
|
26 |
+
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
27 |
+
cs = bs[:]
|
28 |
+
n = 0
|
29 |
+
for b in range(2**8):
|
30 |
+
if b not in bs:
|
31 |
+
bs.append(b)
|
32 |
+
cs.append(2**8+n)
|
33 |
+
n += 1
|
34 |
+
cs = [chr(n) for n in cs]
|
35 |
+
return dict(zip(bs, cs))
|
36 |
+
|
37 |
+
|
38 |
+
def get_pairs(word):
|
39 |
+
"""Return set of symbol pairs in a word.
|
40 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
41 |
+
"""
|
42 |
+
pairs = set()
|
43 |
+
prev_char = word[0]
|
44 |
+
for char in word[1:]:
|
45 |
+
pairs.add((prev_char, char))
|
46 |
+
prev_char = char
|
47 |
+
return pairs
|
48 |
+
|
49 |
+
|
50 |
+
def basic_clean(text):
|
51 |
+
text = ftfy.fix_text(text)
|
52 |
+
text = html.unescape(html.unescape(text))
|
53 |
+
return text.strip()
|
54 |
+
|
55 |
+
|
56 |
+
def whitespace_clean(text):
|
57 |
+
text = re.sub(r'\s+', ' ', text)
|
58 |
+
text = text.strip()
|
59 |
+
return text
|
60 |
+
|
61 |
+
|
62 |
+
class SimpleTokenizer(object):
|
63 |
+
def __init__(self, bpe_path: str = default_bpe(), special_tokens=None):
|
64 |
+
self.byte_encoder = bytes_to_unicode()
|
65 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
66 |
+
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
|
67 |
+
merges = merges[1:49152-256-2+1]
|
68 |
+
merges = [tuple(merge.split()) for merge in merges]
|
69 |
+
vocab = list(bytes_to_unicode().values())
|
70 |
+
vocab = vocab + [v+'</w>' for v in vocab]
|
71 |
+
for merge in merges:
|
72 |
+
vocab.append(''.join(merge))
|
73 |
+
if not special_tokens:
|
74 |
+
special_tokens = ['<start_of_text>', '<end_of_text>']
|
75 |
+
else:
|
76 |
+
special_tokens = ['<start_of_text>', '<end_of_text>'] + special_tokens
|
77 |
+
vocab.extend(special_tokens)
|
78 |
+
self.encoder = dict(zip(vocab, range(len(vocab))))
|
79 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
80 |
+
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
81 |
+
self.cache = {t:t for t in special_tokens}
|
82 |
+
special = "|".join(special_tokens)
|
83 |
+
self.pat = re.compile(special + r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
|
84 |
+
|
85 |
+
self.vocab_size = len(self.encoder)
|
86 |
+
self.all_special_ids = [self.encoder[t] for t in special_tokens]
|
87 |
+
|
88 |
+
def bpe(self, token):
|
89 |
+
if token in self.cache:
|
90 |
+
return self.cache[token]
|
91 |
+
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
|
92 |
+
pairs = get_pairs(word)
|
93 |
+
|
94 |
+
if not pairs:
|
95 |
+
return token+'</w>'
|
96 |
+
|
97 |
+
while True:
|
98 |
+
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
99 |
+
if bigram not in self.bpe_ranks:
|
100 |
+
break
|
101 |
+
first, second = bigram
|
102 |
+
new_word = []
|
103 |
+
i = 0
|
104 |
+
while i < len(word):
|
105 |
+
try:
|
106 |
+
j = word.index(first, i)
|
107 |
+
new_word.extend(word[i:j])
|
108 |
+
i = j
|
109 |
+
except:
|
110 |
+
new_word.extend(word[i:])
|
111 |
+
break
|
112 |
+
|
113 |
+
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
114 |
+
new_word.append(first+second)
|
115 |
+
i += 2
|
116 |
+
else:
|
117 |
+
new_word.append(word[i])
|
118 |
+
i += 1
|
119 |
+
new_word = tuple(new_word)
|
120 |
+
word = new_word
|
121 |
+
if len(word) == 1:
|
122 |
+
break
|
123 |
+
else:
|
124 |
+
pairs = get_pairs(word)
|
125 |
+
word = ' '.join(word)
|
126 |
+
self.cache[token] = word
|
127 |
+
return word
|
128 |
+
|
129 |
+
def encode(self, text):
|
130 |
+
bpe_tokens = []
|
131 |
+
text = whitespace_clean(basic_clean(text)).lower()
|
132 |
+
for token in re.findall(self.pat, text):
|
133 |
+
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
|
134 |
+
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
|
135 |
+
return bpe_tokens
|
136 |
+
|
137 |
+
def decode(self, tokens):
|
138 |
+
text = ''.join([self.decoder[token] for token in tokens])
|
139 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
|
140 |
+
return text
|
code/training/model_configs/ViT-B-16.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 512,
|
3 |
+
"image_resolution": 224,
|
4 |
+
"vision_layers": 12,
|
5 |
+
"vision_width": 768,
|
6 |
+
"vision_patch_size": 16,
|
7 |
+
"context_length": 77,
|
8 |
+
"vocab_size": 49408,
|
9 |
+
"transformer_width": 512,
|
10 |
+
"transformer_heads": 8,
|
11 |
+
"transformer_layers": 12
|
12 |
+
}
|