hyunwoo3235
commited on
Commit
·
6c1ac22
1
Parent(s):
3fcb4d5
Upload 8 files
Browse files- config.json +27 -0
- configuration_retnet.py +44 -0
- flax_model.msgpack +3 -0
- generation_config.json +7 -0
- modeling_flax_retnet.py +577 -0
- special_tokens_map.json +5 -0
- tokenizer.json +0 -0
- tokenizer_config.json +9 -0
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_dropout": 0.1,
|
3 |
+
"architectures": [
|
4 |
+
"RetNetForCausalLM"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_retnet.RetNetConfig",
|
8 |
+
"FlaxAutoModel": "modeling_flax_retnet.FlaxRetNetModel",
|
9 |
+
"FlaxAutoModelForCausalLM": "modeling_flax_retnet.FlaxRetNetForCausalLM"
|
10 |
+
},
|
11 |
+
"attention_type": "parallel",
|
12 |
+
"dropout": 0.1,
|
13 |
+
"hidden_act": "gelu",
|
14 |
+
"hidden_size": 768,
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 1536,
|
17 |
+
"layer_norm_eps": 1e-05,
|
18 |
+
"max_position_embeddings": 512,
|
19 |
+
"model_type": "retnet",
|
20 |
+
"normalize_before": false,
|
21 |
+
"num_hidden_layers": 12,
|
22 |
+
"num_rettention_heads": 4,
|
23 |
+
"output_retentions": false,
|
24 |
+
"recurrent_chunk_size": 512,
|
25 |
+
"transformers_version": "4.29.2",
|
26 |
+
"vocab_size": 50432
|
27 |
+
}
|
configuration_retnet.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
|
4 |
+
class RetNetConfig(PretrainedConfig):
|
5 |
+
model_type = "retnet"
|
6 |
+
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
vocab_size=32000,
|
10 |
+
hidden_size=512,
|
11 |
+
num_hidden_layers=6,
|
12 |
+
num_rettention_heads=8,
|
13 |
+
intermediate_size=2048,
|
14 |
+
hidden_act="gelu",
|
15 |
+
max_position_embeddings=512,
|
16 |
+
initializer_range=0.02,
|
17 |
+
layer_norm_eps=1e-5,
|
18 |
+
dropout=0.1,
|
19 |
+
activation_dropout=0.0,
|
20 |
+
normalize_before=False,
|
21 |
+
attention_type="parallel",
|
22 |
+
recurrent_chunk_size=512,
|
23 |
+
output_retentions=False,
|
24 |
+
output_hidden_states=False,
|
25 |
+
**kwargs
|
26 |
+
):
|
27 |
+
super().__init__(**kwargs)
|
28 |
+
|
29 |
+
self.vocab_size = vocab_size
|
30 |
+
self.hidden_size = hidden_size
|
31 |
+
self.num_hidden_layers = num_hidden_layers
|
32 |
+
self.num_rettention_heads = num_rettention_heads
|
33 |
+
self.intermediate_size = intermediate_size
|
34 |
+
self.hidden_act = hidden_act
|
35 |
+
self.attention_type = attention_type
|
36 |
+
self.max_position_embeddings = max_position_embeddings
|
37 |
+
self.initializer_range = initializer_range
|
38 |
+
self.layer_norm_eps = layer_norm_eps
|
39 |
+
self.dropout = dropout
|
40 |
+
self.normalize_before = normalize_before
|
41 |
+
self.activation_dropout = activation_dropout
|
42 |
+
self.recurrent_chunk_size = recurrent_chunk_size
|
43 |
+
self.output_retentions = output_retentions
|
44 |
+
self.output_hidden_states = output_hidden_states
|
flax_model.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c90e66fc81a33a732b498e3ec0dcc271eca0defa146129ad245e8ff45387595d
|
3 |
+
size 650154262
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"transformers_version": "4.30.2",
|
4 |
+
"eos_token_id": 0,
|
5 |
+
"pad_token_id": 1,
|
6 |
+
"use_cache": false
|
7 |
+
}
|
modeling_flax_retnet.py
ADDED
@@ -0,0 +1,577 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Tuple
|
2 |
+
|
3 |
+
import jax
|
4 |
+
from flax import linen as nn
|
5 |
+
from flax.core import FrozenDict, unfreeze, freeze
|
6 |
+
from flax.traverse_util import flatten_dict, unflatten_dict
|
7 |
+
from jax import numpy as jnp
|
8 |
+
from transformers import FlaxPreTrainedModel
|
9 |
+
from transformers.modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutput
|
10 |
+
from transformers.modeling_flax_utils import ACT2FN
|
11 |
+
|
12 |
+
from .configuration_retnet import RetNetConfig
|
13 |
+
|
14 |
+
|
15 |
+
def rotate_every_two(tensor):
|
16 |
+
rotate_half_tensor = jnp.stack(
|
17 |
+
(-tensor[:, :, :, 1::2], tensor[:, :, :, ::2]), axis=-1
|
18 |
+
)
|
19 |
+
rotate_half_tensor = rotate_half_tensor.reshape(
|
20 |
+
rotate_half_tensor.shape[:-2] + (-1,)
|
21 |
+
)
|
22 |
+
return rotate_half_tensor
|
23 |
+
|
24 |
+
|
25 |
+
def theta_shift(x, sin, cos):
|
26 |
+
return (x * cos) + (rotate_every_two(x) * sin)
|
27 |
+
|
28 |
+
|
29 |
+
class FlaxRetNetRelPos(nn.Module):
|
30 |
+
config: RetNetConfig
|
31 |
+
dtype: jnp.dtype = jnp.float32
|
32 |
+
|
33 |
+
def setup(self) -> None:
|
34 |
+
angle = 1.0 / (
|
35 |
+
10000
|
36 |
+
** jnp.linspace(
|
37 |
+
0, 1, self.config.hidden_size // self.config.num_rettention_heads // 2
|
38 |
+
)
|
39 |
+
)
|
40 |
+
self.angle = angle.repeat(2).flatten()
|
41 |
+
self.decay = jnp.log(
|
42 |
+
1
|
43 |
+
- 2
|
44 |
+
** (-5 - jnp.arange(self.config.num_rettention_heads, dtype=jnp.float32))
|
45 |
+
)
|
46 |
+
self.recurrent_chunk_size = self.config.recurrent_chunk_size
|
47 |
+
|
48 |
+
def __call__(
|
49 |
+
self,
|
50 |
+
slen: int,
|
51 |
+
activate_recurrent: bool = False,
|
52 |
+
chunkwise_recurrent: bool = False,
|
53 |
+
):
|
54 |
+
if activate_recurrent:
|
55 |
+
sin = jnp.sin(self.angle * (slen - 1))
|
56 |
+
cos = jnp.cos(self.angle * (slen - 1))
|
57 |
+
retention_rel_pos = ((sin, cos), jnp.exp(self.decay))
|
58 |
+
elif chunkwise_recurrent:
|
59 |
+
index = jnp.arange(slen)
|
60 |
+
sin = jnp.sin(index[:, None] * self.angle[None, :])
|
61 |
+
cos = jnp.cos(index[:, None] * self.angle[None, :])
|
62 |
+
|
63 |
+
block_index = jnp.arange(self.recurrent_chunk_size)
|
64 |
+
mask = jnp.tril(
|
65 |
+
jnp.ones((self.recurrent_chunk_size, self.recurrent_chunk_size))
|
66 |
+
)
|
67 |
+
mask = jnp.where(
|
68 |
+
~mask.astype(jnp.bool_),
|
69 |
+
float("inf"),
|
70 |
+
block_index[:, None] - block_index[None, :],
|
71 |
+
)
|
72 |
+
mask = jnp.exp(mask * self.decay[:, None, None])
|
73 |
+
mask = jnp.nan_to_num(mask)
|
74 |
+
scale = jnp.sqrt(mask.sum(axis=-1, keepdims=True))
|
75 |
+
mask = mask / scale
|
76 |
+
|
77 |
+
cross_decay = jnp.exp(self.decay * self.recurrent_chunk_size)
|
78 |
+
inner_decay = jnp.exp(self.decay[:, None] * (block_index + 1))
|
79 |
+
cross_decay = cross_decay[:, None, None]
|
80 |
+
inner_decay = inner_decay[:, :, None] / (scale / scale[:, -1, None])
|
81 |
+
|
82 |
+
retention_rel_pos = ((sin, cos), (mask, cross_decay, inner_decay))
|
83 |
+
else:
|
84 |
+
index = jnp.arange(slen)
|
85 |
+
sin = jnp.sin(index[:, None] * self.angle[None, :])
|
86 |
+
cos = jnp.cos(index[:, None] * self.angle[None, :])
|
87 |
+
mask = jnp.tril(jnp.ones((slen, slen)))
|
88 |
+
mask = jnp.where(
|
89 |
+
~mask.astype(jnp.bool_), float("inf"), index[:, None] - index[None, :]
|
90 |
+
)
|
91 |
+
mask = jnp.exp(mask * self.decay[:, None, None])
|
92 |
+
mask = jnp.nan_to_num(mask)
|
93 |
+
mask = mask / jnp.sqrt(mask.sum(axis=-1, keepdims=True))
|
94 |
+
retention_rel_pos = ((sin, cos), mask)
|
95 |
+
|
96 |
+
return retention_rel_pos
|
97 |
+
|
98 |
+
|
99 |
+
class FlaxRetNetFeedForward(nn.Module):
|
100 |
+
config: RetNetConfig
|
101 |
+
dtype: jnp.dtype = jnp.float32
|
102 |
+
|
103 |
+
def setup(self) -> None:
|
104 |
+
self.fc1 = nn.Dense(
|
105 |
+
self.config.intermediate_size,
|
106 |
+
kernel_init=nn.initializers.xavier_normal(),
|
107 |
+
dtype=self.dtype,
|
108 |
+
)
|
109 |
+
self.fc2 = nn.Dense(
|
110 |
+
self.config.hidden_size,
|
111 |
+
kernel_init=nn.initializers.xavier_normal(),
|
112 |
+
dtype=self.dtype,
|
113 |
+
)
|
114 |
+
self.activation_fn = ACT2FN[self.config.hidden_act]
|
115 |
+
self.activation_dropout = nn.Dropout(rate=self.config.dropout)
|
116 |
+
self.dropout = nn.Dropout(rate=self.config.dropout)
|
117 |
+
|
118 |
+
def __call__(
|
119 |
+
self,
|
120 |
+
hidden_states: jnp.ndarray,
|
121 |
+
deterministic: bool = True,
|
122 |
+
) -> jnp.ndarray:
|
123 |
+
hidden_states = self.fc1(hidden_states)
|
124 |
+
hidden_states = self.activation_fn(hidden_states)
|
125 |
+
hidden_states = self.activation_dropout(
|
126 |
+
hidden_states, deterministic=deterministic
|
127 |
+
)
|
128 |
+
hidden_states = self.fc2(hidden_states)
|
129 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
130 |
+
|
131 |
+
return hidden_states
|
132 |
+
|
133 |
+
|
134 |
+
class FlaxRetNetRetention(nn.Module):
|
135 |
+
config: RetNetConfig
|
136 |
+
dtype: jnp.dtype = jnp.float32
|
137 |
+
|
138 |
+
def setup(self) -> None:
|
139 |
+
self.factor = 2
|
140 |
+
self.embed_dim = self.config.hidden_size
|
141 |
+
self.num_heads = self.config.num_rettention_heads
|
142 |
+
self.head_dim = self.embed_dim * self.factor // self.num_heads
|
143 |
+
self.key_dim = self.embed_dim // self.num_heads
|
144 |
+
self.scaling = self.key_dim**-0.5
|
145 |
+
|
146 |
+
self.q_proj = nn.Dense(
|
147 |
+
self.embed_dim,
|
148 |
+
use_bias=True,
|
149 |
+
kernel_init=jax.nn.initializers.xavier_normal(),
|
150 |
+
dtype=self.dtype,
|
151 |
+
)
|
152 |
+
self.k_proj = nn.Dense(
|
153 |
+
self.embed_dim,
|
154 |
+
use_bias=True,
|
155 |
+
kernel_init=jax.nn.initializers.xavier_normal(),
|
156 |
+
dtype=self.dtype,
|
157 |
+
)
|
158 |
+
self.v_proj = nn.Dense(
|
159 |
+
self.embed_dim * self.factor,
|
160 |
+
use_bias=True,
|
161 |
+
kernel_init=jax.nn.initializers.xavier_normal(),
|
162 |
+
dtype=self.dtype,
|
163 |
+
)
|
164 |
+
self.g_proj = nn.Dense(
|
165 |
+
self.embed_dim * self.factor,
|
166 |
+
use_bias=True,
|
167 |
+
kernel_init=nn.initializers.xavier_normal(),
|
168 |
+
dtype=self.dtype,
|
169 |
+
)
|
170 |
+
|
171 |
+
self.out_proj = nn.Dense(
|
172 |
+
self.embed_dim,
|
173 |
+
use_bias=True,
|
174 |
+
kernel_init=jax.nn.initializers.xavier_normal(),
|
175 |
+
dtype=self.dtype,
|
176 |
+
)
|
177 |
+
|
178 |
+
self.group_norm = nn.LayerNorm(epsilon=1e-6, dtype=self.dtype)
|
179 |
+
|
180 |
+
def parallel_forward(self, qr, kr, v, mask):
|
181 |
+
bsz, tgt_len, embed_dim = v.shape
|
182 |
+
|
183 |
+
vr = v.reshape(bsz, tgt_len, self.num_heads, self.head_dim).transpose(
|
184 |
+
(0, 2, 1, 3)
|
185 |
+
)
|
186 |
+
|
187 |
+
qk_mat = qr @ kr.transpose((0, 1, 3, 2))
|
188 |
+
qk_mat = qk_mat * mask
|
189 |
+
qk_mat /= jnp.abs(
|
190 |
+
jax.lax.stop_gradient(qk_mat).sum(axis=-1, keepdims=True)
|
191 |
+
).clip(min=1)
|
192 |
+
output = jnp.matmul(qk_mat, vr)
|
193 |
+
output = output.transpose((0, 2, 1, 3))
|
194 |
+
|
195 |
+
return output
|
196 |
+
|
197 |
+
def chunk_recurrent_forward(self, qr, kr, v, inner_mask):
|
198 |
+
mask, cross_decay, inner_decay = inner_mask
|
199 |
+
bsz, tgt_len, embed_dim = v.shape
|
200 |
+
chunk_len = mask.shape[1]
|
201 |
+
num_chunks = tgt_len // chunk_len
|
202 |
+
|
203 |
+
assert tgt_len % chunk_len == 0
|
204 |
+
|
205 |
+
qr = qr.reshape(
|
206 |
+
bsz, self.num_heads, num_chunks, chunk_len, self.key_dim
|
207 |
+
).transpose((0, 2, 1, 3, 4))
|
208 |
+
kr = kr.reshape(
|
209 |
+
bsz, self.num_heads, num_chunks, chunk_len, self.key_dim
|
210 |
+
).transpose((0, 2, 1, 3, 4))
|
211 |
+
v = v.reshape(
|
212 |
+
bsz, num_chunks, chunk_len, self.num_heads, self.head_dim
|
213 |
+
).transpose((0, 1, 3, 2, 4))
|
214 |
+
|
215 |
+
kr_t = kr.transpose((0, 1, 2, 4, 3))
|
216 |
+
|
217 |
+
qk_mat = qr @ kr_t
|
218 |
+
qk_mat = qk_mat
|
219 |
+
inner_scale = jnp.abs(
|
220 |
+
jax.lax.stop_gradient(qk_mat).sum(axis=-1, keepdims=True)
|
221 |
+
).clip(min=1)
|
222 |
+
qk_mat = qk_mat / inner_scale
|
223 |
+
inner_output = jnp.matmul(qk_mat, v)
|
224 |
+
|
225 |
+
kv = kr_t @ v
|
226 |
+
kv = kv.reshape(bsz, num_chunks, self.num_heads, self.key_dim, self.head_dim)
|
227 |
+
|
228 |
+
kv_recurrent = []
|
229 |
+
cross_scale = []
|
230 |
+
kv_state = jnp.zeros((bsz, self.num_heads, self.key_dim, self.head_dim))
|
231 |
+
kv_scale = jnp.ones((bsz, self.num_heads, 1, 1))
|
232 |
+
|
233 |
+
for i in range(num_chunks):
|
234 |
+
kv_recurrent.append(kv_state / kv_scale)
|
235 |
+
cross_scale.append(kv_scale)
|
236 |
+
|
237 |
+
kv_state = kv_state * cross_decay + kv[:, i]
|
238 |
+
kv_scale = (
|
239 |
+
jnp.abs(jax.lax.stop_gradient(kv_state).sum(axis=-2, keepdims=True))
|
240 |
+
.max(axis=-1, keepdims=True)
|
241 |
+
.clip(min=1)
|
242 |
+
)
|
243 |
+
|
244 |
+
kv_recurrent = jnp.stack(kv_recurrent, axis=1)
|
245 |
+
cross_scale = jnp.stack(cross_scale, axis=1)
|
246 |
+
|
247 |
+
all_scale = jnp.maximum(inner_scale, cross_scale)
|
248 |
+
align_inner_scale = all_scale / inner_scale
|
249 |
+
align_cross_scale = all_scale / cross_scale
|
250 |
+
|
251 |
+
cross_output = (qr * inner_decay) @ kv_recurrent
|
252 |
+
output = inner_output / align_inner_scale + cross_output / align_cross_scale
|
253 |
+
|
254 |
+
output = output.transpose((0, 2, 1, 3, 4))
|
255 |
+
return output
|
256 |
+
|
257 |
+
def __call__(
|
258 |
+
self,
|
259 |
+
hidden_states: jnp.ndarray,
|
260 |
+
rel_pos: Optional[jnp.ndarray] = None,
|
261 |
+
chunkwise_recurrent: bool = True,
|
262 |
+
incremental_state=None,
|
263 |
+
) -> jnp.ndarray:
|
264 |
+
bsz, tgt_len, _ = hidden_states.shape
|
265 |
+
(sin, cos), inner_mask = rel_pos
|
266 |
+
|
267 |
+
q = self.q_proj(hidden_states)
|
268 |
+
k = self.k_proj(hidden_states)
|
269 |
+
v = self.v_proj(hidden_states)
|
270 |
+
g = self.g_proj(hidden_states)
|
271 |
+
|
272 |
+
k *= self.scaling
|
273 |
+
q = q.reshape(bsz, tgt_len, self.num_heads, self.key_dim).transpose(
|
274 |
+
(0, 2, 1, 3)
|
275 |
+
)
|
276 |
+
k = k.reshape(bsz, tgt_len, self.num_heads, self.key_dim).transpose(
|
277 |
+
(0, 2, 1, 3)
|
278 |
+
)
|
279 |
+
|
280 |
+
qr = theta_shift(q, sin, cos)
|
281 |
+
kr = theta_shift(k, sin, cos)
|
282 |
+
|
283 |
+
if incremental_state is not None:
|
284 |
+
raise NotImplementedError
|
285 |
+
elif self.config.attention_type == "chunkwise_recurrent":
|
286 |
+
output = self.chunk_recurrent_forward(qr, kr, v, inner_mask=inner_mask)
|
287 |
+
else:
|
288 |
+
output = self.parallel_forward(qr, kr, v, inner_mask)
|
289 |
+
|
290 |
+
output = self.group_norm(output)
|
291 |
+
output = output.reshape(bsz, tgt_len, -1)
|
292 |
+
|
293 |
+
output = nn.swish(g) * output
|
294 |
+
output = self.out_proj(output)
|
295 |
+
|
296 |
+
return output
|
297 |
+
|
298 |
+
|
299 |
+
class FlaxRetNetLayer(nn.Module):
|
300 |
+
config: RetNetConfig
|
301 |
+
dtype: jnp.dtype = jnp.float32
|
302 |
+
|
303 |
+
def setup(self) -> None:
|
304 |
+
self.retention = FlaxRetNetRetention(self.config, dtype=self.dtype)
|
305 |
+
self.retention_layer_norm = nn.LayerNorm(
|
306 |
+
epsilon=self.config.layer_norm_eps, dtype=self.dtype
|
307 |
+
)
|
308 |
+
|
309 |
+
self.ffn = FlaxRetNetFeedForward(self.config, dtype=self.dtype)
|
310 |
+
self.final_layer_norm = nn.LayerNorm(
|
311 |
+
epsilon=self.config.layer_norm_eps, dtype=self.dtype
|
312 |
+
)
|
313 |
+
|
314 |
+
self.dropout_module = nn.Dropout(rate=self.config.dropout)
|
315 |
+
|
316 |
+
def __call__(
|
317 |
+
self,
|
318 |
+
hidden_states: jnp.ndarray,
|
319 |
+
retention_rel_pos: Optional[tuple] = None,
|
320 |
+
deterministic: bool = True,
|
321 |
+
) -> jnp.ndarray:
|
322 |
+
residual = hidden_states
|
323 |
+
hidden_states = self.retention_layer_norm(hidden_states)
|
324 |
+
hidden_states = self.retention(hidden_states, rel_pos=retention_rel_pos)
|
325 |
+
hidden_states = self.dropout_module(hidden_states, deterministic=deterministic)
|
326 |
+
hidden_states = residual + hidden_states
|
327 |
+
|
328 |
+
residual = hidden_states
|
329 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
330 |
+
hidden_states = self.ffn(hidden_states, deterministic=deterministic)
|
331 |
+
hidden_states = residual + hidden_states
|
332 |
+
|
333 |
+
return hidden_states
|
334 |
+
|
335 |
+
|
336 |
+
class FlaxRetNetLayerCollection(nn.Module):
|
337 |
+
config: RetNetConfig
|
338 |
+
dtype: jnp.dtype = jnp.float32
|
339 |
+
|
340 |
+
def setup(self) -> None:
|
341 |
+
self.layers = [
|
342 |
+
FlaxRetNetLayer(self.config, dtype=self.dtype)
|
343 |
+
for _ in range(self.config.num_hidden_layers)
|
344 |
+
]
|
345 |
+
|
346 |
+
def __call__(
|
347 |
+
self,
|
348 |
+
hidden_states: jnp.ndarray,
|
349 |
+
retention_rel_pos: tuple = None,
|
350 |
+
deterministic: bool = True,
|
351 |
+
output_retentions: bool = False,
|
352 |
+
output_hidden_states: bool = False,
|
353 |
+
return_dict: bool = True,
|
354 |
+
) -> jnp.ndarray:
|
355 |
+
all_hidden_states = () if output_hidden_states else None
|
356 |
+
all_retentions = () if output_retentions else None
|
357 |
+
|
358 |
+
for layer in self.layers:
|
359 |
+
if output_hidden_states:
|
360 |
+
all_hidden_states += (hidden_states,)
|
361 |
+
|
362 |
+
layer_outputs = layer(
|
363 |
+
hidden_states,
|
364 |
+
retention_rel_pos=retention_rel_pos,
|
365 |
+
deterministic=deterministic,
|
366 |
+
)
|
367 |
+
hidden_states = layer_outputs
|
368 |
+
|
369 |
+
outputs = (hidden_states, all_hidden_states, all_retentions)
|
370 |
+
return outputs
|
371 |
+
|
372 |
+
|
373 |
+
class FlaxRetNetPretrainedModel(FlaxPreTrainedModel):
|
374 |
+
config_class = RetNetConfig
|
375 |
+
base_model_prefix = "transformer"
|
376 |
+
main_input_name = "input_ids"
|
377 |
+
module_class: nn.Module = None
|
378 |
+
|
379 |
+
def __init__(
|
380 |
+
self,
|
381 |
+
config: RetNetConfig,
|
382 |
+
input_shape: Tuple = (1, 1),
|
383 |
+
seed: int = 0,
|
384 |
+
dtype: jnp.dtype = jnp.float32,
|
385 |
+
_do_init: bool = True,
|
386 |
+
**kwargs
|
387 |
+
):
|
388 |
+
module = self.module_class(config, dtype=dtype, **kwargs)
|
389 |
+
super().__init__(
|
390 |
+
config,
|
391 |
+
module,
|
392 |
+
input_shape=input_shape,
|
393 |
+
seed=seed,
|
394 |
+
dtype=dtype,
|
395 |
+
_do_init=_do_init,
|
396 |
+
)
|
397 |
+
|
398 |
+
def init_weights(
|
399 |
+
self,
|
400 |
+
rng: jax.random.PRNGKey,
|
401 |
+
input_shape: Tuple,
|
402 |
+
params: FrozenDict = None,
|
403 |
+
) -> FrozenDict:
|
404 |
+
input_ids = jnp.zeros(input_shape, dtype="i4")
|
405 |
+
attention_mask = jnp.ones_like(input_ids)
|
406 |
+
params_rng, dropout_rng = jax.random.split(rng)
|
407 |
+
rngs = {"params": params_rng, "dropout": dropout_rng}
|
408 |
+
|
409 |
+
module_init_outputs = self.module.init(
|
410 |
+
rngs, input_ids, attention_mask, return_dict=False
|
411 |
+
)
|
412 |
+
|
413 |
+
random_params = module_init_outputs["params"]
|
414 |
+
|
415 |
+
if params is not None:
|
416 |
+
random_params = flatten_dict(unfreeze(random_params))
|
417 |
+
params = flatten_dict(unfreeze(params))
|
418 |
+
for missing_key in self._missing_keys:
|
419 |
+
params[missing_key] = random_params[missing_key]
|
420 |
+
self._missing_keys = []
|
421 |
+
return freeze(unflatten_dict(params))
|
422 |
+
else:
|
423 |
+
return random_params
|
424 |
+
|
425 |
+
def __call__(
|
426 |
+
self,
|
427 |
+
input_ids: jnp.ndarray,
|
428 |
+
attention_mask: Optional[jnp.ndarray] = None,
|
429 |
+
params: dict = None,
|
430 |
+
dropout_rng: jnp.ndarray = None,
|
431 |
+
train: bool = False,
|
432 |
+
output_retentions: bool = False,
|
433 |
+
output_hidden_states: bool = False,
|
434 |
+
return_dict: bool = True,
|
435 |
+
):
|
436 |
+
output_retentions = (
|
437 |
+
output_retentions
|
438 |
+
if output_retentions is not None
|
439 |
+
else self.config.output_retentions
|
440 |
+
)
|
441 |
+
output_hidden_states = (
|
442 |
+
output_hidden_states
|
443 |
+
if output_hidden_states is not None
|
444 |
+
else self.config.output_hidden_states
|
445 |
+
)
|
446 |
+
return_dict = (
|
447 |
+
return_dict if return_dict is not None else self.config.return_dict
|
448 |
+
)
|
449 |
+
|
450 |
+
batch_size, sequence_length = input_ids.shape
|
451 |
+
|
452 |
+
if attention_mask is None:
|
453 |
+
attention_mask = jnp.ones((batch_size, sequence_length))
|
454 |
+
|
455 |
+
rngs = {}
|
456 |
+
if dropout_rng is not None:
|
457 |
+
rngs["dropout"] = dropout_rng
|
458 |
+
|
459 |
+
inputs = {"params": params or self.params}
|
460 |
+
|
461 |
+
outputs = self.module.apply(
|
462 |
+
inputs,
|
463 |
+
jnp.array(input_ids, dtype="i4"),
|
464 |
+
jnp.array(attention_mask, dtype="i4"),
|
465 |
+
not train,
|
466 |
+
output_retentions,
|
467 |
+
output_hidden_states,
|
468 |
+
return_dict,
|
469 |
+
rngs=rngs,
|
470 |
+
)
|
471 |
+
|
472 |
+
return outputs
|
473 |
+
|
474 |
+
|
475 |
+
class FlaxRetNetModule(nn.Module):
|
476 |
+
config: RetNetConfig
|
477 |
+
dtype: jnp.dtype = jnp.float32
|
478 |
+
|
479 |
+
def setup(self) -> None:
|
480 |
+
self.embed_tokens = nn.Embed(
|
481 |
+
self.config.vocab_size,
|
482 |
+
self.config.hidden_size,
|
483 |
+
embedding_init=jax.nn.initializers.xavier_normal(),
|
484 |
+
dtype=self.dtype,
|
485 |
+
)
|
486 |
+
self.retnet_rel_pos = FlaxRetNetRelPos(self.config, dtype=self.dtype)
|
487 |
+
|
488 |
+
self.layers = FlaxRetNetLayerCollection(self.config, dtype=self.dtype)
|
489 |
+
|
490 |
+
def __call__(
|
491 |
+
self,
|
492 |
+
input_ids: jnp.ndarray,
|
493 |
+
attention_mask: Optional[jnp.ndarray] = None,
|
494 |
+
deterministic: bool = True,
|
495 |
+
output_retentions: bool = False,
|
496 |
+
output_hidden_states: bool = False,
|
497 |
+
return_dict: bool = True,
|
498 |
+
):
|
499 |
+
input_embeds = self.embed_tokens(input_ids)
|
500 |
+
|
501 |
+
batch_size, sequence_length = input_embeds.shape[:2]
|
502 |
+
retention_rel_pos = self.retnet_rel_pos(
|
503 |
+
sequence_length,
|
504 |
+
activate_recurrent=False,
|
505 |
+
chunkwise_recurrent=self.config.attention_type == "chunkwise_recurrent",
|
506 |
+
)
|
507 |
+
|
508 |
+
outputs = self.layers(
|
509 |
+
input_embeds,
|
510 |
+
retention_rel_pos=retention_rel_pos,
|
511 |
+
deterministic=deterministic,
|
512 |
+
output_retentions=output_retentions,
|
513 |
+
output_hidden_states=output_hidden_states,
|
514 |
+
return_dict=return_dict,
|
515 |
+
)
|
516 |
+
|
517 |
+
if not return_dict:
|
518 |
+
return tuple(v for v in outputs if v is not None)
|
519 |
+
|
520 |
+
return FlaxBaseModelOutput(
|
521 |
+
last_hidden_state=outputs[0],
|
522 |
+
hidden_states=outputs[1],
|
523 |
+
attentions=outputs[-1],
|
524 |
+
)
|
525 |
+
|
526 |
+
|
527 |
+
class FlaxRetNetModel(FlaxRetNetPretrainedModel):
|
528 |
+
module_class = FlaxRetNetModule
|
529 |
+
|
530 |
+
|
531 |
+
class FlaxRetNetForCausalLMModule(nn.Module):
|
532 |
+
config: RetNetConfig
|
533 |
+
dtype: jnp.dtype = jnp.float32
|
534 |
+
|
535 |
+
def setup(self) -> None:
|
536 |
+
self.transformer = FlaxRetNetModule(self.config, dtype=self.dtype)
|
537 |
+
|
538 |
+
self.lm_head = nn.Dense(
|
539 |
+
self.config.vocab_size,
|
540 |
+
use_bias=False,
|
541 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
542 |
+
dtype=self.dtype,
|
543 |
+
)
|
544 |
+
|
545 |
+
def __call__(
|
546 |
+
self,
|
547 |
+
input_ids: jnp.ndarray,
|
548 |
+
attention_mask: Optional[jnp.ndarray] = None,
|
549 |
+
deterministic: bool = True,
|
550 |
+
output_retentions: bool = False,
|
551 |
+
output_hidden_states: bool = False,
|
552 |
+
return_dict: bool = True,
|
553 |
+
):
|
554 |
+
outputs = self.transformer(
|
555 |
+
input_ids,
|
556 |
+
attention_mask=attention_mask,
|
557 |
+
deterministic=deterministic,
|
558 |
+
output_retentions=output_retentions,
|
559 |
+
output_hidden_states=output_hidden_states,
|
560 |
+
return_dict=return_dict,
|
561 |
+
)
|
562 |
+
hidden_states = outputs[0]
|
563 |
+
|
564 |
+
lm_logits = self.lm_head(hidden_states)
|
565 |
+
|
566 |
+
if not return_dict:
|
567 |
+
return (lm_logits,) + outputs[1:]
|
568 |
+
|
569 |
+
return FlaxCausalLMOutput(
|
570 |
+
logits=lm_logits,
|
571 |
+
hidden_states=outputs.hidden_states,
|
572 |
+
attentions=outputs.attentions,
|
573 |
+
)
|
574 |
+
|
575 |
+
|
576 |
+
class FlaxRetNetForCausalLM(FlaxRetNetPretrainedModel):
|
577 |
+
module_class = FlaxRetNetForCausalLMModule
|
special_tokens_map.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<|endoftext|>",
|
3 |
+
"eos_token": "<|endoftext|>",
|
4 |
+
"unk_token": "<|endoftext|>"
|
5 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": "<|endoftext|>",
|
4 |
+
"clean_up_tokenization_spaces": true,
|
5 |
+
"eos_token": "<|endoftext|>",
|
6 |
+
"model_max_length": 2048,
|
7 |
+
"tokenizer_class": "GPTNeoXTokenizer",
|
8 |
+
"unk_token": "<|endoftext|>"
|
9 |
+
}
|