|
from typing import Dict, List, Any |
|
|
|
class PreTrainedPipeline(): |
|
def __init__(self, path=""): |
|
|
|
|
|
|
|
|
|
raise NotImplementedError( |
|
"Please implement TokenClassificationPipeline __init__ function" |
|
) |
|
|
|
def __call__(self, inputs: str) -> List[Dict[str, Any]]: |
|
""" |
|
Args: |
|
inputs (:obj:`str`): |
|
a string containing some text |
|
Return: |
|
A :obj:`list`:. The object returned should be like [{"entity_group": "XXX", "word": "some word", "start": 3, "end": 6, "score": 0.82}] containing : |
|
- "entity_group": A string representing what the entity is. |
|
- "word": A substring of the original string that was detected as an entity. |
|
- "start": the offset within `input` leading to `answer`. context[start:stop] == word |
|
- "end": the ending offset within `input` leading to `answer`. context[start:stop] === word |
|
- "score": A score between 0 and 1 describing how confident the model is for this entity. |
|
""" |
|
|
|
raise NotImplementedError( |
|
"Please implement TokenClassificationPipeline __call__ function" |
|
) |