File size: 23,762 Bytes
799a108 5f04493 799a108 b5ff531 799a108 c3b7486 b1e8c83 b104b34 3a6a5fa b104b34 799a108 3a6a5fa 799a108 b104b34 799a108 b104b34 799a108 b104b34 799a108 b104b34 3a6a5fa 799a108 b104b34 3a6a5fa 799a108 3a6a5fa 799a108 3a6a5fa 799a108 b104b34 799a108 3a6a5fa b104b34 3a6a5fa b104b34 3a6a5fa 6a28cfa b104b34 799a108 b104b34 799a108 b104b34 799a108 b104b34 799a108 b104b34 799a108 b5ff531 799a108 b104b34 3a6a5fa b104b34 799a108 b104b34 799a108 b104b34 799a108 b5ff531 799a108 b104b34 799a108 b104b34 799a108 b5ff531 799a108 b104b34 799a108 b104b34 799a108 b5ff531 799a108 b104b34 799a108 b104b34 799a108 b104b34 799a108 b104b34 3a6a5fa 799a108 b104b34 799a108 c8b1b0d 799a108 c8b1b0d 799a108 c8b1b0d 799a108 c8b1b0d 799a108 b104b34 799a108 c8b1b0d b104b34 c8b1b0d 799a108 b104b34 3a6a5fa 799a108 b104b34 799a108 b9b6bb3 799a108 b104b34 3a6a5fa 799a108 b104b34 799a108 b104b34 799a108 b104b34 799a108 b104b34 799a108 b104b34 799a108 b104b34 799a108 b104b34 799a108 b104b34 799a108 b104b34 799a108 b104b34 799a108 b104b34 799a108 3a6a5fa 799a108 b104b34 3a6a5fa 799a108 b104b34 799a108 b104b34 799a108 b104b34 799a108 b104b34 3a6a5fa b104b34 3a6a5fa b104b34 799a108 3a6a5fa b104b34 c3b7486 799a108 b1e8c83 b104b34 b1e8c83 c3b7486 b104b34 799a108 b104b34 799a108 b104b34 a2e63cd 799a108 b104b34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
---
pipeline_tag: text-to-video
license: other
license_name: tencent-hunyuan-community
license_link: LICENSE
---
<!-- ## **HunyuanVideo** -->
<p align="center">
<img src="https://raw.githubusercontent.com/Tencent/HunyuanVideo/refs/heads/main/assets/logo.png" height=100>
</p>
# HunyuanVideo: A Systematic Framework For Large Video Generation Model Training
-----
This repo contains PyTorch model definitions, pre-trained weights and inference/sampling code for our paper exploring HunyuanVideo. You can find more visualizations on our [project page](https://aivideo.hunyuan.tencent.com).
> [**HunyuanVideo: A Systematic Framework For Large Video Generation Model Training**](https://arxiv.org/abs/2412.03603) <br>
## News!!
* Jan 13, 2025: 📈 We release the [Penguin Video Benchmark](https://github.com/Tencent/HunyuanVideo/blob/main/assets/PenguinVideoBenchmark.csv).
* Dec 18, 2024: 🏃♂️ We release the [FP8 model weights](https://huggingface.co/tencent/HunyuanVideo/blob/main/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states_fp8.pt) of HunyuanVideo to save more GPU memory.
* Dec 17, 2024: 🤗 HunyuanVideo has been integrated into [Diffusers](https://huggingface.co/docs/diffusers/main/api/pipelines/hunyuan_video).
* Dec 7, 2024: 🚀 We release the parallel inference code for HunyuanVideo powered by [xDiT](https://github.com/xdit-project/xDiT).
* Dec 3, 2024: 👋 We release the inference code and model weights of HunyuanVideo. [Download](https://github.com/Tencent/HunyuanVideo/blob/main/ckpts/README.md).
## Open-source Plan
- HunyuanVideo (Text-to-Video Model)
- [x] Inference
- [x] Checkpoints
- [x] Multi-gpus Sequence Parallel inference (Faster inference speed on more gpus)
- [x] Web Demo (Gradio)
- [x] Diffusers
- [x] FP8 Quantified weight
- [x] Penguin Video Benchmark
- [ ] ComfyUI
- [ ] Multi-gpus PipeFusion inference (Low memory requirements)
- HunyuanVideo (Image-to-Video Model)
- [ ] Inference
- [ ] Checkpoints
## Contents
- [HunyuanVideo: A Systematic Framework For Large Video Generation Model](#hunyuanvideo-a-systematic-framework-for-large-video-generation-model)
- [News!!](#news)
- [Open-source Plan](#open-source-plan)
- [Contents](#contents)
- [**Abstract**](#abstract)
- [**HunyuanVideo Overall Architecture**](#hunyuanvideo-overall-architecture)
- [**HunyuanVideo Key Features**](#hunyuanvideo-key-features)
- [**Unified Image and Video Generative Architecture**](#unified-image-and-video-generative-architecture)
- [**MLLM Text Encoder**](#mllm-text-encoder)
- [**3D VAE**](#3d-vae)
- [**Prompt Rewrite**](#prompt-rewrite)
- [Comparisons](#comparisons)
- [Requirements](#requirements)
- [Dependencies and Installation](#️dependencies-and-installation)
- [Installation Guide for Linux](#installation-guide-for-linux)
- [Download Pretrained Models](#download-pretrained-models)
- [Single-gpu Inference](#single-gpu-inference)
- [Using Command Line](#using-command-line)
- [Run a Gradio Server](#run-a-gradio-server)
- [More Configurations](#more-configurations)
- [Parallel Inference on Multiple GPUs by xDiT](#parallel-inference-on-multiple-gpus-by-xdit)
- [Using Command Line](#using-command-line-1)
- [FP8 Inference](#fp8-inference)
- [Using Command Line](#using-command-line-2)
- [BibTeX](#bibtex)
- [Acknowledgements](#acknowledgements)
---
## **Abstract**
We present HunyuanVideo, a novel open-source video foundation model that exhibits performance in video generation that is comparable to, if not superior to, leading closed-source models. In order to train HunyuanVideo model, we adopt several key technologies for model learning, including data curation, image-video joint model training, and an efficient infrastructure designed to facilitate large-scale model training and inference. Additionally, through an effective strategy for scaling model architecture and dataset, we successfully trained a video generative model with over 13 billion parameters, making it the largest among all open-source models.
We conducted extensive experiments and implemented a series of targeted designs to ensure high visual quality, motion diversity, text-video alignment, and generation stability. According to professional human evaluation results, HunyuanVideo outperforms previous state-of-the-art models, including Runway Gen-3, Luma 1.6, and 3 top-performing Chinese video generative models. By releasing the code and weights of the foundation model and its applications, we aim to bridge the gap between closed-source and open-source video foundation models. This initiative will empower everyone in the community to experiment with their ideas, fostering a more dynamic and vibrant video generation ecosystem.
## **HunyuanVideo Overall Architecture**
HunyuanVideo is trained on a spatial-temporally
compressed latent space, which is compressed through a Causal 3D VAE. Text prompts are encoded
using a large language model, and used as the conditions. Taking Gaussian noise and the conditions as
input, our generative model produces an output latent, which is then decoded to images or videos through
the 3D VAE decoder.
<p align="center">
<img src="https://raw.githubusercontent.com/Tencent/HunyuanVideo/refs/heads/main/assets/overall.png" height=300>
</p>
## **HunyuanVideo Key Features**
### **Unified Image and Video Generative Architecture**
HunyuanVideo introduces the Transformer design and employs a Full Attention mechanism for unified image and video generation.
Specifically, we use a "Dual-stream to Single-stream" hybrid model design for video generation. In the dual-stream phase, video and text
tokens are processed independently through multiple Transformer blocks, enabling each modality to learn its own appropriate modulation mechanisms without interference. In the single-stream phase, we concatenate the video and text
tokens and feed them into subsequent Transformer blocks for effective multimodal information fusion.
This design captures complex interactions between visual and semantic information, enhancing
overall model performance.
<p align="center">
<img src="https://raw.githubusercontent.com/Tencent/HunyuanVideo/refs/heads/main/assets/backbone.png" height=350>
</p>
### **MLLM Text Encoder**
Some previous text-to-video models typically use pre-trained CLIP and T5-XXL as text encoders where CLIP uses Transformer Encoder and T5 uses an Encoder-Decoder structure. In contrast, we utilize a pre-trained Multimodal Large Language Model (MLLM) with a Decoder-Only structure as our text encoder, which has the following advantages: (i) Compared with T5, MLLM after visual instruction finetuning has better image-text alignment in the feature space, which alleviates the difficulty of the instruction following in diffusion models; (ii)
Compared with CLIP, MLLM has demonstrated superior ability in image detail description
and complex reasoning; (iii) MLLM can play as a zero-shot learner by following system instructions prepended to user prompts, helping text features pay more attention to key information. In addition, MLLM is based on causal attention while T5-XXL utilizes bidirectional attention that produces better text guidance for diffusion models. Therefore, we introduce an extra bidirectional token refiner to enhance text features.
<p align="center">
<img src="https://raw.githubusercontent.com/Tencent/HunyuanVideo/refs/heads/main/assets/text_encoder.png" height=275>
</p>
### **3D VAE**
HunyuanVideo trains a 3D VAE with CausalConv3D to compress pixel-space videos and images into a compact latent space. We set the compression ratios of video length, space, and channel to 4, 8, and 16 respectively. This can significantly reduce the number of tokens for the subsequent diffusion transformer model, allowing us to train videos at the original resolution and frame rate.
<p align="center">
<img src="https://raw.githubusercontent.com/Tencent/HunyuanVideo/refs/heads/main/assets/3dvae.png" height=150>
</p>
### **Prompt Rewrite**
To address the variability in linguistic style and length of user-provided prompts, we fine-tune the [Hunyuan-Large model](https://github.com/Tencent/Tencent-Hunyuan-Large) as our prompt rewrite model to adapt the original user prompt to model-preferred prompt.
We provide two rewrite modes: Normal mode and Master mode, which can be called using different prompts. The prompts are shown [here](hyvideo/prompt_rewrite.py). The Normal mode is designed to enhance the video generation model's comprehension of user intent, facilitating a more accurate interpretation of the instructions provided. The Master mode enhances the description of aspects such as composition, lighting, and camera movement, which leans towards generating videos with a higher visual quality. However, this emphasis may occasionally result in the loss of some semantic details.
The Prompt Rewrite Model can be directly deployed and inferred using the [Hunyuan-Large original code](https://github.com/Tencent/Tencent-Hunyuan-Large). We release the weights of the Prompt Rewrite Model [here](https://huggingface.co/Tencent/HunyuanVideo-PromptRewrite).
## Comparisons
To evaluate the performance of HunyuanVideo, we selected five strong baselines from closed-source video generation models. In total, we utilized 1,533 text prompts, generating an equal number of video samples with HunyuanVideo in a single run. For a fair comparison, we conducted inference only once, avoiding any cherry-picking of results. When comparing with the baseline methods, we maintained the default settings for all selected models, ensuring consistent video resolution. Videos were assessed based on three criteria: Text Alignment, Motion Quality, and Visual Quality. More than 60 professional evaluators performed the evaluation. Notably, HunyuanVideo demonstrated the best overall performance, particularly excelling in motion quality. Please note that the evaluation is based on Hunyuan Video's high-quality version. This is different from the currently released fast version.
<p align="center">
<table>
<thead>
<tr>
<th rowspan="2">Model</th> <th rowspan="2">Open Source</th> <th>Duration</th> <th>Text Alignment</th> <th>Motion Quality</th> <th rowspan="2">Visual Quality</th> <th rowspan="2">Overall</th> <th rowspan="2">Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>HunyuanVideo (Ours)</td> <td> ✔ </td> <td>5s</td> <td>61.8%</td> <td>66.5%</td> <td>95.7%</td> <td>41.3%</td> <td>1</td>
</tr>
<tr>
<td>CNTopA (API)</td> <td> ✘ </td> <td>5s</td> <td>62.6%</td> <td>61.7%</td> <td>95.6%</td> <td>37.7%</td> <td>2</td>
</tr>
<tr>
<td>CNTopB (Web)</td> <td> ✘</td> <td>5s</td> <td>60.1%</td> <td>62.9%</td> <td>97.7%</td> <td>37.5%</td> <td>3</td>
</tr>
<tr>
<td>GEN-3 alpha (Web)</td> <td>✘</td> <td>6s</td> <td>47.7%</td> <td>54.7%</td> <td>97.5%</td> <td>27.4%</td> <td>4</td>
</tr>
<tr>
<td>Luma1.6 (API)</td><td>✘</td> <td>5s</td> <td>57.6%</td> <td>44.2%</td> <td>94.1%</td> <td>24.8%</td> <td>5</td>
</tr>
<tr>
<td>CNTopC (Web)</td> <td>✘</td> <td>5s</td> <td>48.4%</td> <td>47.2%</td> <td>96.3%</td> <td>24.6%</td> <td>6</td>
</tr>
</tbody>
</table>
</p>
## Requirements
The following table shows the requirements for running HunyuanVideo model (batch size = 1) to generate videos:
| Model | Setting<br/>(height/width/frame) | GPU Peak Memory |
| :----------: | :------------------------------: | :-------------: |
| HunyuanVideo | 720px1280px129f | 60GB |
| HunyuanVideo | 544px960px129f | 45GB |
* An NVIDIA GPU with CUDA support is required.
* The model is tested on a single 80G GPU.
* **Minimum**: The minimum GPU memory required is 60GB for 720px1280px129f and 45G for 544px960px129f.
* **Recommended**: We recommend using a GPU with 80GB of memory for better generation quality.
* Tested operating system: Linux
## Dependencies and Installation
Begin by cloning the repository:
```shell
git clone https://github.com/tencent/HunyuanVideo
cd HunyuanVideo
```
### Installation Guide for Linux
We recommend CUDA versions 12.4 or 11.8 for the manual installation.
Conda's installation instructions are available [here](https://docs.anaconda.com/free/miniconda/index.html).
```shell
# 1. Create conda environment
conda create -n HunyuanVideo python==3.10.9
# 2. Activate the environment
conda activate HunyuanVideo
# 3. Install PyTorch and other dependencies using conda
# For CUDA 11.8
conda install pytorch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 pytorch-cuda=11.8 -c pytorch -c nvidia
# For CUDA 12.4
conda install pytorch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 pytorch-cuda=12.4 -c pytorch -c nvidia
# 4. Install pip dependencies
python -m pip install -r requirements.txt
# 5. Install flash attention v2 for acceleration (requires CUDA 11.8 or above)
python -m pip install ninja
python -m pip install git+https://github.com/Dao-AILab/[email protected]
# 6. Install xDiT for parallel inference (It is recommended to use torch 2.4.0 and flash-attn 2.6.3)
python -m pip install xfuser==0.4.0
```
In case of running into float point exception(core dump) on the specific GPU type, you may try the following solutions:
```shell
# Option 1: Making sure you have installed CUDA 12.4, CUBLAS>=12.4.5.8, and CUDNN>=9.00 (or simply using our CUDA 12 docker image).
pip install nvidia-cublas-cu12==12.4.5.8
export LD_LIBRARY_PATH=/opt/conda/lib/python3.8/site-packages/nvidia/cublas/lib/
# Option 2: Forcing to explictly use the CUDA 11.8 compiled version of Pytorch and all the other packages
pip uninstall -r requirements.txt # uninstall all packages
pip uninstall -y xfuser
pip install torch==2.4.0 --index-url https://download.pytorch.org/whl/cu118
pip install -r requirements.txt
pip install ninja
pip install git+https://github.com/Dao-AILab/[email protected]
pip install xfuser==0.4.0
```
Additionally, HunyuanVideo also provides a pre-built Docker image. Use the following command to pull and run the docker image.
```shell
# For CUDA 12.4 (updated to avoid float point exception)
docker pull hunyuanvideo/hunyuanvideo:cuda_12
docker run -itd --gpus all --init --net=host --uts=host --ipc=host --name hunyuanvideo --security-opt=seccomp=unconfined --ulimit=stack=67108864 --ulimit=memlock=-1 --privileged hunyuanvideo/hunyuanvideo:cuda_12
# For CUDA 11.8
docker pull hunyuanvideo/hunyuanvideo:cuda_11
docker run -itd --gpus all --init --net=host --uts=host --ipc=host --name hunyuanvideo --security-opt=seccomp=unconfined --ulimit=stack=67108864 --ulimit=memlock=-1 --privileged hunyuanvideo/hunyuanvideo:cuda_11
```
## Download Pretrained Models
The details of download pretrained models are shown [here](ckpts/README.md).
## Single-gpu Inference
We list the height/width/frame settings we support in the following table.
| Resolution | h/w=9:16 | h/w=16:9 | h/w=4:3 | h/w=3:4 | h/w=1:1 |
| :----------------: | :-------------: | :-------------: | :-------------: | :-------------: | :------------: |
| 540p | 544px960px129f | 960px544px129f | 624px832px129f | 832px624px129f | 720px720px129f |
| 720p (recommended) | 720px1280px129f | 1280px720px129f | 1104px832px129f | 832px1104px129f | 960px960px129f |
### Using Command Line
```bash
cd HunyuanVideo
python3 sample_video.py \
--video-size 720 1280 \
--video-length 129 \
--infer-steps 50 \
--prompt "A cat walks on the grass, realistic style." \
--flow-reverse \
--use-cpu-offload \
--save-path ./results
```
### Run a Gradio Server
```bash
python3 gradio_server.py --flow-reverse
# set SERVER_NAME and SERVER_PORT manually
# SERVER_NAME=0.0.0.0 SERVER_PORT=8081 python3 gradio_server.py --flow-reverse
```
### More Configurations
We list some more useful configurations for easy usage:
| Argument | Default | Description |
| :--------------------: | :-------: | :----------------------------------------------------------: |
| `--prompt` | None | The text prompt for video generation |
| `--video-size` | 720 1280 | The size of the generated video |
| `--video-length` | 129 | The length of the generated video |
| `--infer-steps` | 50 | The number of steps for sampling |
| `--embedded-cfg-scale` | 6.0 | Embedded Classifier free guidance scale |
| `--flow-shift` | 7.0 | Shift factor for flow matching schedulers |
| `--flow-reverse` | False | If reverse, learning/sampling from t=1 -> t=0 |
| `--seed` | None | The random seed for generating video, if None, we init a random seed |
| `--use-cpu-offload` | False | Use CPU offload for the model load to save more memory, necessary for high-res video generation |
| `--save-path` | ./results | Path to save the generated video |
## Parallel Inference on Multiple GPUs by xDiT
[xDiT](https://github.com/xdit-project/xDiT) is a Scalable Inference Engine for Diffusion Transformers (DiTs) on multi-GPU Clusters.
It has successfully provided low-latency parallel inference solutions for a variety of DiTs models, including mochi-1, CogVideoX, Flux.1, SD3, etc. This repo adopted the [Unified Sequence Parallelism (USP)](https://arxiv.org/abs/2405.07719) APIs for parallel inference of the HunyuanVideo model.
### Using Command Line
For example, to generate a video with 8 GPUs, you can use the following command:
```bash
cd HunyuanVideo
torchrun --nproc_per_node=8 sample_video.py \
--video-size 1280 720 \
--video-length 129 \
--infer-steps 50 \
--prompt "A cat walks on the grass, realistic style." \
--flow-reverse \
--seed 42 \
--ulysses-degree 8 \
--ring-degree 1 \
--save-path ./results
```
You can change the `--ulysses-degree` and `--ring-degree` to control the parallel configurations for the best performance. The valid parallel configurations are shown in the following table.
<details>
<summary>Supported Parallel Configurations (Click to expand)</summary>
| --video-size | --video-length | --ulysses-degree x --ring-degree | --nproc_per_node |
| -------------------- | -------------- | -------------------------------- | ---------------- |
| 1280 720 or 720 1280 | 129 | 8x1,4x2,2x4,1x8 | 8 |
| 1280 720 or 720 1280 | 129 | 1x5 | 5 |
| 1280 720 or 720 1280 | 129 | 4x1,2x2,1x4 | 4 |
| 1280 720 or 720 1280 | 129 | 3x1,1x3 | 3 |
| 1280 720 or 720 1280 | 129 | 2x1,1x2 | 2 |
| 1104 832 or 832 1104 | 129 | 4x1,2x2,1x4 | 4 |
| 1104 832 or 832 1104 | 129 | 3x1,1x3 | 3 |
| 1104 832 or 832 1104 | 129 | 2x1,1x2 | 2 |
| 960 960 | 129 | 6x1,3x2,2x3,1x6 | 6 |
| 960 960 | 129 | 4x1,2x2,1x4 | 4 |
| 960 960 | 129 | 3x1,1x3 | 3 |
| 960 960 | 129 | 1x2,2x1 | 2 |
| 960 544 or 544 960 | 129 | 6x1,3x2,2x3,1x6 | 6 |
| 960 544 or 544 960 | 129 | 4x1,2x2,1x4 | 4 |
| 960 544 or 544 960 | 129 | 3x1,1x3 | 3 |
| 960 544 or 544 960 | 129 | 1x2,2x1 | 2 |
| 832 624 or 624 832 | 129 | 4x1,2x2,1x4 | 4 |
| 624 832 or 624 832 | 129 | 3x1,1x3 | 3 |
| 832 624 or 624 832 | 129 | 2x1,1x2 | 2 |
| 720 720 | 129 | 1x5 | 5 |
| 720 720 | 129 | 3x1,1x3 | 3 |
</details>
<p align="center">
<table align="center">
<thead>
<tr>
<th colspan="4">Latency (Sec) for 1280x720 (129 frames 50 steps) on 8xGPU</th>
</tr>
<tr>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<th>1904.08</th>
<th>934.09 (2.04x)</th>
<th>514.08 (3.70x)</th>
<th>337.58 (5.64x)</th>
</tr>
</tbody>
</table>
</p>
## FP8 Inference
Using HunyuanVideo with FP8 quantized weights, which saves about 10GB of GPU memory. You can download the [weights](https://huggingface.co/tencent/HunyuanVideo/blob/main/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states_fp8.pt) and [weight scales](https://huggingface.co/tencent/HunyuanVideo/blob/main/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states_fp8_map.pt) from Huggingface.
### Using Command Line
Here, you must explicitly specify the FP8 weight path. For example, to generate a video with fp8 weights, you can use the following command:
```bash
cd HunyuanVideo
DIT_CKPT_PATH={PATH_TO_FP8_WEIGHTS}/{WEIGHT_NAME}_fp8.pt
python3 sample_video.py \
--dit-weight ${DIT_CKPT_PATH} \
--video-size 1280 720 \
--video-length 129 \
--infer-steps 50 \
--prompt "A cat walks on the grass, realistic style." \
--seed 42 \
--embedded-cfg-scale 6.0 \
--flow-shift 7.0 \
--flow-reverse \
--use-cpu-offload \
--use-fp8 \
--save-path ./results
```
## BibTeX
If you find [HunyuanVideo](https://arxiv.org/abs/2412.03603) useful for your research and applications, please cite using this BibTeX:
```BibTeX
@misc{kong2024hunyuanvideo,
title={HunyuanVideo: A Systematic Framework For Large Video Generative Models},
author={Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li, Bo Wu, Jianwei Zhang, Kathrina Wu, Qin Lin, Aladdin Wang, Andong Wang, Changlin Li, Duojun Huang, Fang Yang, Hao Tan, Hongmei Wang, Jacob Song, Jiawang Bai, Jianbing Wu, Jinbao Xue, Joey Wang, Junkun Yuan, Kai Wang, Mengyang Liu, Pengyu Li, Shuai Li, Weiyan Wang, Wenqing Yu, Xinchi Deng, Yang Li, Yanxin Long, Yi Chen, Yutao Cui, Yuanbo Peng, Zhentao Yu, Zhiyu He, Zhiyong Xu, Zixiang Zhou, Zunnan Xu, Yangyu Tao, Qinglin Lu, Songtao Liu, Dax Zhou, Hongfa Wang, Yong Yang, Di Wang, Yuhong Liu, and Jie Jiang, along with Caesar Zhong},
year={2024},
archivePrefix={arXiv preprint arXiv:2412.03603},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2412.03603},
}
```
## Acknowledgements
We would like to thank the contributors to the [SD3](https://huggingface.co/stabilityai/stable-diffusion-3-medium), [FLUX](https://github.com/black-forest-labs/flux), [Llama](https://github.com/meta-llama/llama), [LLaVA](https://github.com/haotian-liu/LLaVA), [Xtuner](https://github.com/InternLM/xtuner), [diffusers](https://github.com/huggingface/diffusers) and [HuggingFace](https://huggingface.co) repositories, for their open research and exploration.
Additionally, we also thank the Tencent Hunyuan Multimodal team for their help with the text encoder.
|