--- language: - en - zh - id - th - vi - ms - lo datasets: - cerebras/SlimPajama-627B - Skywork/SkyPile-150B - allenai/MADLAD-400 - cc100 tags: - multilingual - sea - sailor - TensorBlock - GGUF license: apache-2.0 base_model: sail/Sailor-1.8B inference: false model-index: - name: Sailor-1.8B results: - task: type: text-generation dataset: name: XQuAD-Thai type: XQuAD-Thai metrics: - type: EM (3-Shot) value: 32.72 name: EM (3-Shot) - type: F1 (3-Shot) value: 48.66 name: F1 (3-Shot) - task: type: text-generation dataset: name: TyDiQA-Indonesian type: TyDiQA-Indonesian metrics: - type: EM (3-Shot) value: 40.88 name: EM (3-Shot) - type: F1 (3-Shot) value: 65.37 name: F1 (3-Shot) - task: type: text-generation dataset: name: XQuAD-Vietnamese type: XQuAD-Vietnamese metrics: - type: EM (3-Shot) value: 34.22 name: EM (3-Shot) - type: F1 (3-Shot) value: 53.35 name: F1 (3-Shot) - task: type: text-generation dataset: name: XCOPA-Thai type: XCOPA-Thai metrics: - type: EM (3-Shot) value: 53.8 name: EM (3-Shot) - task: type: text-generation dataset: name: XCOPA-Indonesian type: XCOPA-Indonesian metrics: - type: EM (3-Shot) value: 64.2 name: EM (3-Shot) - task: type: text-generation dataset: name: XCOPA-Vietnamese type: XCOPA-Vietnamese metrics: - type: EM (3-Shot) value: 63.2 name: EM (3-Shot) - task: type: text-generation dataset: name: M3Exam-Thai type: M3Exam-Thai metrics: - type: EM (3-Shot) value: 25.38 name: EM (3-Shot) - task: type: text-generation dataset: name: M3Exam-Indonesian type: M3Exam-Indonesian metrics: - type: EM (3-Shot) value: 28.3 name: EM (3-Shot) - task: type: text-generation dataset: name: M3Exam-Vietnamese type: M3Exam-Vietnamese metrics: - type: EM (3-Shot) value: 34.71 name: EM (3-Shot) - task: type: text-generation dataset: name: BELEBELE-Thai type: BELEBELE-Thai metrics: - type: EM (3-Shot) value: 34.22 name: EM (3-Shot) - task: type: text-generation dataset: name: BELEBELE-Indonesian type: BELEBELE-Indonesian metrics: - type: EM (3-Shot) value: 34.89 name: EM (3-Shot) - task: type: text-generation dataset: name: BELEBELE-Vietnamese type: BELEBELE-Vietnamese metrics: - type: EM (3-Shot) value: 35.33 name: EM (3-Shot) ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## sail/Sailor-1.8B - GGUF This repo contains GGUF format model files for [sail/Sailor-1.8B](https://huggingface.co/sail/Sailor-1.8B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Sailor-1.8B-Q2_K.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-GGUF/blob/main/Sailor-1.8B-Q2_K.gguf) | Q2_K | 0.847 GB | smallest, significant quality loss - not recommended for most purposes | | [Sailor-1.8B-Q3_K_S.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-GGUF/blob/main/Sailor-1.8B-Q3_K_S.gguf) | Q3_K_S | 0.954 GB | very small, high quality loss | | [Sailor-1.8B-Q3_K_M.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-GGUF/blob/main/Sailor-1.8B-Q3_K_M.gguf) | Q3_K_M | 1.016 GB | very small, high quality loss | | [Sailor-1.8B-Q3_K_L.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-GGUF/blob/main/Sailor-1.8B-Q3_K_L.gguf) | Q3_K_L | 1.056 GB | small, substantial quality loss | | [Sailor-1.8B-Q4_0.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-GGUF/blob/main/Sailor-1.8B-Q4_0.gguf) | Q4_0 | 1.120 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Sailor-1.8B-Q4_K_S.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-GGUF/blob/main/Sailor-1.8B-Q4_K_S.gguf) | Q4_K_S | 1.158 GB | small, greater quality loss | | [Sailor-1.8B-Q4_K_M.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-GGUF/blob/main/Sailor-1.8B-Q4_K_M.gguf) | Q4_K_M | 1.218 GB | medium, balanced quality - recommended | | [Sailor-1.8B-Q5_0.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-GGUF/blob/main/Sailor-1.8B-Q5_0.gguf) | Q5_0 | 1.311 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Sailor-1.8B-Q5_K_S.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-GGUF/blob/main/Sailor-1.8B-Q5_K_S.gguf) | Q5_K_S | 1.328 GB | large, low quality loss - recommended | | [Sailor-1.8B-Q5_K_M.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-GGUF/blob/main/Sailor-1.8B-Q5_K_M.gguf) | Q5_K_M | 1.377 GB | large, very low quality loss - recommended | | [Sailor-1.8B-Q6_K.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-GGUF/blob/main/Sailor-1.8B-Q6_K.gguf) | Q6_K | 1.579 GB | very large, extremely low quality loss | | [Sailor-1.8B-Q8_0.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-GGUF/blob/main/Sailor-1.8B-Q8_0.gguf) | Q8_0 | 1.958 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Sailor-1.8B-GGUF --include "Sailor-1.8B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Sailor-1.8B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```