--- pipeline_tag: text-generation inference: false license: apache-2.0 library_name: transformers tags: - language - granite-3.0 - TensorBlock - GGUF base_model: ibm-granite/granite-3.0-3b-a800m-instruct model-index: - name: granite-3.0-2b-instruct results: - task: type: text-generation dataset: name: IFEval type: instruction-following metrics: - type: pass@1 value: 42.49 name: pass@1 - type: pass@1 value: 7.02 name: pass@1 - task: type: text-generation dataset: name: AGI-Eval type: human-exams metrics: - type: pass@1 value: 25.7 name: pass@1 - type: pass@1 value: 50.16 name: pass@1 - type: pass@1 value: 20.51 name: pass@1 - task: type: text-generation dataset: name: OBQA type: commonsense metrics: - type: pass@1 value: 40.8 name: pass@1 - type: pass@1 value: 59.95 name: pass@1 - type: pass@1 value: 71.86 name: pass@1 - type: pass@1 value: 67.01 name: pass@1 - type: pass@1 value: 48 name: pass@1 - task: type: text-generation dataset: name: BoolQ type: reading-comprehension metrics: - type: pass@1 value: 78.65 name: pass@1 - type: pass@1 value: 6.71 name: pass@1 - task: type: text-generation dataset: name: ARC-C type: reasoning metrics: - type: pass@1 value: 50.94 name: pass@1 - type: pass@1 value: 26.85 name: pass@1 - type: pass@1 value: 37.7 name: pass@1 - task: type: text-generation dataset: name: HumanEvalSynthesis type: code metrics: - type: pass@1 value: 39.63 name: pass@1 - type: pass@1 value: 40.85 name: pass@1 - type: pass@1 value: 35.98 name: pass@1 - type: pass@1 value: 27.4 name: pass@1 - task: type: text-generation dataset: name: GSM8K type: math metrics: - type: pass@1 value: 47.54 name: pass@1 - type: pass@1 value: 19.86 name: pass@1 - task: type: text-generation dataset: name: PAWS-X (7 langs) type: multilingual metrics: - type: pass@1 value: 50.23 name: pass@1 - type: pass@1 value: 28.87 name: pass@1 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"> Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> </p> </div> </div> ## ibm-granite/granite-3.0-3b-a800m-instruct - GGUF This repo contains GGUF format model files for [ibm-granite/granite-3.0-3b-a800m-instruct](https://huggingface.co/ibm-granite/granite-3.0-3b-a800m-instruct). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). <div style="text-align: left; margin: 20px 0;"> <a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;"> Run them on the TensorBlock client using your local machine ↗ </a> </div> ## Prompt template ``` <|start_of_role|>system<|end_of_role|>{system_prompt}<|end_of_text|> <|start_of_role|>user<|end_of_role|>{prompt}<|end_of_text|> <|start_of_role|>assistant<|end_of_role|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [granite-3.0-3b-a800m-instruct-Q2_K.gguf](https://huggingface.co/tensorblock/granite-3.0-3b-a800m-instruct-GGUF/blob/main/granite-3.0-3b-a800m-instruct-Q2_K.gguf) | Q2_K | 1.266 GB | smallest, significant quality loss - not recommended for most purposes | | [granite-3.0-3b-a800m-instruct-Q3_K_S.gguf](https://huggingface.co/tensorblock/granite-3.0-3b-a800m-instruct-GGUF/blob/main/granite-3.0-3b-a800m-instruct-Q3_K_S.gguf) | Q3_K_S | 1.489 GB | very small, high quality loss | | [granite-3.0-3b-a800m-instruct-Q3_K_M.gguf](https://huggingface.co/tensorblock/granite-3.0-3b-a800m-instruct-GGUF/blob/main/granite-3.0-3b-a800m-instruct-Q3_K_M.gguf) | Q3_K_M | 1.644 GB | very small, high quality loss | | [granite-3.0-3b-a800m-instruct-Q3_K_L.gguf](https://huggingface.co/tensorblock/granite-3.0-3b-a800m-instruct-GGUF/blob/main/granite-3.0-3b-a800m-instruct-Q3_K_L.gguf) | Q3_K_L | 1.774 GB | small, substantial quality loss | | [granite-3.0-3b-a800m-instruct-Q4_0.gguf](https://huggingface.co/tensorblock/granite-3.0-3b-a800m-instruct-GGUF/blob/main/granite-3.0-3b-a800m-instruct-Q4_0.gguf) | Q4_0 | 1.926 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [granite-3.0-3b-a800m-instruct-Q4_K_S.gguf](https://huggingface.co/tensorblock/granite-3.0-3b-a800m-instruct-GGUF/blob/main/granite-3.0-3b-a800m-instruct-Q4_K_S.gguf) | Q4_K_S | 1.942 GB | small, greater quality loss | | [granite-3.0-3b-a800m-instruct-Q4_K_M.gguf](https://huggingface.co/tensorblock/granite-3.0-3b-a800m-instruct-GGUF/blob/main/granite-3.0-3b-a800m-instruct-Q4_K_M.gguf) | Q4_K_M | 2.059 GB | medium, balanced quality - recommended | | [granite-3.0-3b-a800m-instruct-Q5_0.gguf](https://huggingface.co/tensorblock/granite-3.0-3b-a800m-instruct-GGUF/blob/main/granite-3.0-3b-a800m-instruct-Q5_0.gguf) | Q5_0 | 2.338 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [granite-3.0-3b-a800m-instruct-Q5_K_S.gguf](https://huggingface.co/tensorblock/granite-3.0-3b-a800m-instruct-GGUF/blob/main/granite-3.0-3b-a800m-instruct-Q5_K_S.gguf) | Q5_K_S | 2.338 GB | large, low quality loss - recommended | | [granite-3.0-3b-a800m-instruct-Q5_K_M.gguf](https://huggingface.co/tensorblock/granite-3.0-3b-a800m-instruct-GGUF/blob/main/granite-3.0-3b-a800m-instruct-Q5_K_M.gguf) | Q5_K_M | 2.407 GB | large, very low quality loss - recommended | | [granite-3.0-3b-a800m-instruct-Q6_K.gguf](https://huggingface.co/tensorblock/granite-3.0-3b-a800m-instruct-GGUF/blob/main/granite-3.0-3b-a800m-instruct-Q6_K.gguf) | Q6_K | 2.776 GB | very large, extremely low quality loss | | [granite-3.0-3b-a800m-instruct-Q8_0.gguf](https://huggingface.co/tensorblock/granite-3.0-3b-a800m-instruct-GGUF/blob/main/granite-3.0-3b-a800m-instruct-Q8_0.gguf) | Q8_0 | 3.593 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/granite-3.0-3b-a800m-instruct-GGUF --include "granite-3.0-3b-a800m-instruct-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/granite-3.0-3b-a800m-instruct-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```