--- pipeline_tag: text-generation inference: false license: apache-2.0 datasets: - bigcode/commitpackft - TIGER-Lab/MathInstruct - meta-math/MetaMathQA - glaiveai/glaive-code-assistant-v3 - glaive-function-calling-v2 - bugdaryan/sql-create-context-instruction - garage-bAInd/Open-Platypus - nvidia/HelpSteer - bigcode/self-oss-instruct-sc2-exec-filter-50k metrics: - code_eval library_name: transformers tags: - code - granite - TensorBlock - GGUF base_model: ibm-granite/granite-8b-code-instruct-128k model-index: - name: granite-8B-Code-instruct-128k results: - task: type: text-generation dataset: name: HumanEvalSynthesis (Python) type: bigcode/humanevalpack metrics: - type: pass@1 value: 62.2 name: pass@1 verified: false - type: pass@1 value: 51.4 name: pass@1 verified: false - type: pass@1 value: 38.9 name: pass@1 verified: false - type: pass@1 value: 38.3 name: pass@1 verified: false - task: type: text-generation dataset: name: RepoQA (Python@16K) type: repoqa metrics: - type: pass@1 (thresh=0.5) value: 73.0 name: pass@1 (thresh=0.5) verified: false - type: pass@1 (thresh=0.5) value: 37.0 name: pass@1 (thresh=0.5) verified: false - type: pass@1 (thresh=0.5) value: 73.0 name: pass@1 (thresh=0.5) verified: false - type: pass@1 (thresh=0.5) value: 62.0 name: pass@1 (thresh=0.5) verified: false - type: pass@1 (thresh=0.5) value: 63.0 name: pass@1 (thresh=0.5) verified: false ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## ibm-granite/granite-8b-code-instruct-128k - GGUF This repo contains GGUF format model files for [ibm-granite/granite-8b-code-instruct-128k](https://huggingface.co/ibm-granite/granite-8b-code-instruct-128k). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` System: {system_prompt} Question: {prompt} Answer: ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [granite-8b-code-instruct-128k-Q2_K.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/blob/main/granite-8b-code-instruct-128k-Q2_K.gguf) | Q2_K | 2.852 GB | smallest, significant quality loss - not recommended for most purposes | | [granite-8b-code-instruct-128k-Q3_K_S.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/blob/main/granite-8b-code-instruct-128k-Q3_K_S.gguf) | Q3_K_S | 3.304 GB | very small, high quality loss | | [granite-8b-code-instruct-128k-Q3_K_M.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/blob/main/granite-8b-code-instruct-128k-Q3_K_M.gguf) | Q3_K_M | 3.674 GB | very small, high quality loss | | [granite-8b-code-instruct-128k-Q3_K_L.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/blob/main/granite-8b-code-instruct-128k-Q3_K_L.gguf) | Q3_K_L | 3.993 GB | small, substantial quality loss | | [granite-8b-code-instruct-128k-Q4_0.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/blob/main/granite-8b-code-instruct-128k-Q4_0.gguf) | Q4_0 | 4.276 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [granite-8b-code-instruct-128k-Q4_K_S.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/blob/main/granite-8b-code-instruct-128k-Q4_K_S.gguf) | Q4_K_S | 4.305 GB | small, greater quality loss | | [granite-8b-code-instruct-128k-Q4_K_M.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/blob/main/granite-8b-code-instruct-128k-Q4_K_M.gguf) | Q4_K_M | 4.548 GB | medium, balanced quality - recommended | | [granite-8b-code-instruct-128k-Q5_0.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/blob/main/granite-8b-code-instruct-128k-Q5_0.gguf) | Q5_0 | 5.190 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [granite-8b-code-instruct-128k-Q5_K_S.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/blob/main/granite-8b-code-instruct-128k-Q5_K_S.gguf) | Q5_K_S | 5.190 GB | large, low quality loss - recommended | | [granite-8b-code-instruct-128k-Q5_K_M.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/blob/main/granite-8b-code-instruct-128k-Q5_K_M.gguf) | Q5_K_M | 5.330 GB | large, very low quality loss - recommended | | [granite-8b-code-instruct-128k-Q6_K.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/blob/main/granite-8b-code-instruct-128k-Q6_K.gguf) | Q6_K | 6.161 GB | very large, extremely low quality loss | | [granite-8b-code-instruct-128k-Q8_0.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/blob/main/granite-8b-code-instruct-128k-Q8_0.gguf) | Q8_0 | 7.977 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/granite-8b-code-instruct-128k-GGUF --include "granite-8b-code-instruct-128k-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/granite-8b-code-instruct-128k-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```