terrencewee12 commited on
Commit
e82c80b
1 Parent(s): 9e3c0f2

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +70 -9
README.md CHANGED
@@ -1,17 +1,18 @@
 
1
  ---
2
- datasets:
3
- - tyqiangz/multilingual-sentiments
4
  language:
5
  - en
6
  - ms
7
  - zh
8
- license: apache-2.0
9
- metrics:
10
- - accuracy
11
  tags:
12
  - sentiment-analysis
13
  - text-classification
14
  - multilingual
 
 
 
 
 
15
  model-index:
16
  - name: xlm-roberta-base-sentiment-multilingual-finetuned
17
  results:
@@ -19,11 +20,68 @@ model-index:
19
  type: text-classification
20
  name: Text Classification
21
  dataset:
22
- name: Multilingual Sentiments
23
  type: tyqiangz/multilingual-sentiments
 
24
  metrics:
25
  - type: accuracy
26
- value: 0.7737435897435897
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  ---
28
 
29
  # xlm-roberta-base-sentiment-multilingual-finetuned
@@ -46,7 +104,7 @@ The model was fine-tuned using the Hugging Face Transformers library.
46
 
47
  training_args = TrainingArguments(
48
  output_dir="./results",
49
- num_train_epochs=1,
50
  per_device_train_batch_size=16,
51
  per_device_eval_batch_size=64,
52
  warmup_steps=500,
@@ -60,7 +118,10 @@ training_args = TrainingArguments(
60
 
61
  ## Evaluation results
62
 
63
- 'eval_accuracy': 0.7737435897435897, 'eval_f1': 0.7724731131078052, 'eval_precision': 0.7733524717389839, 'eval_recall': 0.7737435897435897,
 
 
 
64
 
65
  ## Environmental impact
66
 
 
1
+
2
  ---
 
 
3
  language:
4
  - en
5
  - ms
6
  - zh
 
 
 
7
  tags:
8
  - sentiment-analysis
9
  - text-classification
10
  - multilingual
11
+ license: apache-2.0
12
+ datasets:
13
+ - tyqiangz/multilingual-sentiments
14
+ metrics:
15
+ - accuracy
16
  model-index:
17
  - name: xlm-roberta-base-sentiment-multilingual-finetuned
18
  results:
 
20
  type: text-classification
21
  name: Text Classification
22
  dataset:
 
23
  type: tyqiangz/multilingual-sentiments
24
+ name: Multilingual Sentiments
25
  metrics:
26
  - type: accuracy
27
+ value: 0.7528205128205128
28
+
29
+
30
+ Baseline Scores:
31
+ Classification Report:
32
+ Negative:
33
+ Precision: 0.6153
34
+ Recall: 0.8292
35
+ F1-score: 0.7064
36
+ Support: 1680
37
+ Neutral:
38
+ Precision: 0.5381
39
+ Recall: 0.3035
40
+ F1-score: 0.3881
41
+ Support: 1443
42
+ Positive:
43
+ Precision: 0.7607
44
+ Recall: 0.7803
45
+ F1-score: 0.7704
46
+ Support: 1752
47
+ Metrics:
48
+ Accuracy:
49
+ Value: 0.6560
50
+ Support: 4875
51
+ Macro Avg:
52
+ Value: 0.6380
53
+ Support: 4875
54
+ Weighted Avg:
55
+ Value: 0.6447
56
+ Support: 4875
57
+
58
+ Finetuned Scores:
59
+ Classification Report:
60
+ Negative:
61
+ Precision: 0.7487
62
+ Recall: 0.7875
63
+ F1-score: 0.7676
64
+ Support: 1680
65
+ Neutral:
66
+ Precision: 0.6775
67
+ Recall: 0.6216
68
+ F1-score: 0.6484
69
+ Support: 1443
70
+ Positive:
71
+ Precision: 0.8128
72
+ Recall: 0.8276
73
+ F1-score: 0.8201
74
+ Support: 1752
75
+ Metrics:
76
+ Accuracy:
77
+ Value: 0.7528
78
+ Support: 4875
79
+ Macro Avg:
80
+ Value: 0.7463
81
+ Support: 4875
82
+ Weighted Avg:
83
+ Value: 0.7507
84
+ Support: 4875
85
  ---
86
 
87
  # xlm-roberta-base-sentiment-multilingual-finetuned
 
104
 
105
  training_args = TrainingArguments(
106
  output_dir="./results",
107
+ num_train_epochs=5,
108
  per_device_train_batch_size=16,
109
  per_device_eval_batch_size=64,
110
  warmup_steps=500,
 
118
 
119
  ## Evaluation results
120
 
121
+ 'eval_accuracy': 0.7528205128205128, 'eval_f1': 0.7511924805177581, 'eval_precision': 0.7506612130427309, 'eval_recall': 0.7528205128205128
122
+
123
+
124
+ ## Test Score :
125
 
126
  ## Environmental impact
127